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Abstract 
 
Heterogeneous effects of welfare reforms on earnings, transfers, and income have been established 
theoretically and empirically. Evaluation studies often focus on quantile treatment effects (QTE), which 
rely on the marginal distributions of potential treatment and control outcomes. Parameters that depend on 
the joint distribution of potential outcomes, such as quantiles of the distribution of treatment effects 
(QDTE), receive less attention. We propose a strategy to identify these parameters. We leverage the 
property that, under random assignment, rank correlation coefficients between actual treatment and 
predicted control state outcomes are identical, irrespective of whether predictions are based on treatment 
or control units. To identify QDTE, we assume that all permutations of observation units satisfying this 
property are equally likely. Rearranging quantiles yields a generalized version of quantile treatment effects 
(GQTE). We employ a reweighting approach for identification under strong ignorability. We test the 
predictor strength and demonstrate that highly predictive covariates yield unbiased, consistent, and 
asymptotically normal estimators. Our analysis of Connecticut’s Jobs First program reveals initial income 
increases for a larger fraction of participants than previously recognized. Long-term gains were at least 
twice as large as those derived from conventional QTE and concentrated at the lower end of the 
distribution. 
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1 Introduction

Understanding the distributional consequences of welfare reforms is important for the

design of tax and transfer policies. Transfer programs, which aim to provide social

security and enhance equity, can affect labor supply and earnings (Kline and Tartari,

2016). Some design features of these programs, such as a generous earnings disregard,

can lead to increased earnings for certain segments of the distribution while simultane-

ously reducing earnings for other segments (Bitler et al., 2006). A key challenge when

studying the effectiveness of transfer programs is that even ideal experiments can only

be used to identify features of the distribution of treatment effects that depend on sep-

arate marginal distributions of treatment and control outcomes, such as the average

treatment effect (ATE) or quantile treatment effects (QTE).1

Bitler et al. (2006) analyze data from Connecticut’s Jobs First welfare experiment

and find that QTE estimates display heterogeneous treatment responses consistent with

predictions from labor supply theory. Using the same data source, Bitler et al. (2017)

formally test and reject the hypothesis that subgroup-specific ATE can explain im-

portant features of the treatment effect heterogeneity revealed by QTE. However, the

authors emphasize that QTE are different from quantiles of the distribution of treat-

ment effects (QDTE) if the rank invariance assumption is violated. Bitler et al. (2005)

provide evidence of rank reversals in a related study based on Canadian data, suggesting

that their QTE estimates may not be interpreted as QDTE.2

This paper proposes an approach to identify QDTE. The approach is used to ex-

plore the distributional consequences of Connecticut’s Jobs First welfare experiment

on women’s earnings, transfers, and income. We begin by considering rank correlation

coefficients (Kendall, 1938) between actual treatment outcomes and predicted control
1Experiments are informative about ATE without any further identifying assumptions. In contrast,

a rank invariance assumption is required to identify QTE as defined by Doksum (1974) and Lehmann
(1974). Rank invariance implies that observation units maintain their relative position in the poten-
tial outcome distribution regardless of whether they are being assigned to the treatment group or
the control group. Although rank invariance is a strong assumption, QTE estimation has become a
standard approach in the treatment effects literature. Important methodological contributions include
Chernozhukov and Hansen (2005), Firpo (2007) and Frölich and Melly (2013).

2QDTE are only identical to QTE if the rank invariance assumption holds and if QTE are mono-
tonically increasing along the distribution. In general, the interpretation of QTE is quite different from
that of QDTE (Lee, 2006). For example, consider a welfare reform that aims to increase individual
income. In this context, a positive median treatment effect implies that the income of the median
person has increased. In contrast, a positive median of the distribution of treatment effects indicates
that the incomes of at least 50 percent of the study population have increased.
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state outcomes in a scenario where treatment and control group sizes are equal. Un-

der random assignment, we obtain identical rank correlation coefficients, regardless of

whether we use treatment or control units to calculate predicted outcomes. We refer to

this property as ‘Rank Correlation Property’ (RCP). We show that the rank correla-

tion coefficient between potential treatment and control outcomes is identified under the

assumption that all permutations of observation units satisfying the RCP are equally

likely. We use the same assumption to identify QDTE as quantiles of average unit-level

treatment effects derived from permutations of observation units satisfying the RCP.

Rearranging QDTE yields a generalized version of quantile treatment treatment effects

(GQTE), which do not require a rank invariance assumption but align with conventional

QTE under rank invariance.3

Our identification strategy rests on modest assumptions because we focus on situ-

ations in which relevant control outcome predictors are observed. Many experimental

studies collect pre-treatment outcomes along with other highly predictive covariates. We

propose a simulation-based test to assess the strength of model predictors, measured

by the rank correlation coefficient between actual and predicted control outcomes. We

use simulated data to estimate specific target values of the rank correlation coefficient

between potential treatment and control outcomes. We test whether the estimated rank

correlation coefficients deviate significantly from these target values. We also employ a

Kolmogorov-Smirnov test to ascertain whether deviations of estimated rank correlation

coefficients from target values have an impact on our GQTE estimates. While we can-

not test whether all permutations of observation units satisfying the RCP are equally

likely, we demonstrate that the distribution of permutation-specific GQTE is approx-

imately normal for each quantile, strongly supporting the use of averages associated

with the assumption of equally likely permutations.

We extend our approach to identify our parameters of interest under strong ignor-

ability. We employ a reweighting approach akin to Firpo (2007) to obtain reweighted

versions of actual and predicted outcomes. We use these reweighted outcomes to spec-

ify a ‘conditional RCP’. The identification of QDTE under strong ignorability is based
3The distribution of treatment effects also serves as a basis for deriving various other parameters

(Heckman et al., 1997; Heckman and Vytlacil, 2007). In our empirical application, we will determine
the proportion of women who benefit from Jobs First and calculate the total gains and losses resulting
from the program.
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on the assumption that all permutations of observation units satisfying the conditional

RCP are equally likely. Finally, we extend our approach to situations in which treat-

ment and control group sizes are unequal. Monte Carlo simulations confirm that our

estimators are unbiased, consistent, and asymptotically normal if relevant predictors

are available. We also find that estimated bootstrap standard errors are a good repre-

sentation of the true sampling variation.

Following Bitler et al. (2006), we estimate separate effects for the periods preceding

and following the implementation of time limits, which led to the exclusion of Jobs First

women from welfare benefits. During the pre-time limit period (quarters 1-7 after the

initiation of Jobs First), our estimated rank correlation coefficients between potential

treatment and control outcomes range from approximately 0.7 to 0.8. During the post-

time limit period (quarters 8-16), this range shifts to approximately 0.6 to 0.7 due to

mobility over time. We test the relevance of our predictors and find that they are

sufficiently strong to produce unbiased results.

Our findings confirm substantial heterogeneity in response to the Jobs First welfare

experiment. Our GQTE estimates exhibit qualitative similarity to conventional QTE

estimates during the pre-time limit period. In contrast, when we account for rank

changes during the post-time limit period, we uncover both positive effects at the lower

end and negative effects at the higher end of the earnings distribution. Negative effects

at the higher end of the earnings distribution suggest that some women in the Jobs

First group were either unable or unwilling to increase their earnings, even though

incentives to reduce earnings to receive higher welfare payments disappeared with the

implementation of time limits. Instead, our findings indicate that the initially observed

negative effects of Jobs First on the earnings distribution were more persistent than

previously recognized. Regarding income, we find that women with lower incomes are

most responsive to reductions in transfers following the implementation of time limits.

We also observe negative income effects at the higher end of the distribution, which

align with the corresponding negative earnings effects.

We use QTE and GQTE estimates to assess the proportions of positive and negative

treatment effects, revealing substantial disparities between the two methods. During the

pre-time limit period, QTE estimates yield a lower proportion of positive income effects

(85.9%) than GQTE estimates (99.0%). When focussing on effects that reach statistical

3



significance at a 0.1% level, the proportion of positive income effects based on QTE

estimates drops to 52.5%, whereas the proportion based on GQTE estimates remains

higher at 71.7%. During the post-time limit period, QTE and GQTE estimates exhibit

similar proportions of statistically significant income effects, although the locations of

these effects differ substantially between the two methods.

We also use our estimates to quantify the total gains and losses emanating from the

Jobs First program. We find that the total gains and losses during the post-time limit

period are preliminary driven by the impact of Jobs First on the earnings distribution.

Moreover, our findings indicate that the increase in earnings successfully offset the

majority of losses in transfers stemming from the implementation of time limits. We

observe total gains in income of approximately $190,000 based on QTE estimates and

around $383,000 based on GQTE estimates. When we apply a significance level of 0.1%,

these gains decrease to approximately $43,000 based on QTE estimates, whereas the

corresponding figure based on GQTE estimates is approximately $260,000, more than

six times higher.

The remainder of this paper is structured as follows: Section 2 provides a brief

overview of related literature. Section 3 introduces some basic ideas and defines our

parameters of interest. Identification is covered in Section 4, followed by estimation in

Section 5. The results of our empirical application are presented in Section 6. Section 7

concludes.

2 Related literature

The study of heterogeneous treatment effects has traditionally relied on estimating ATE

within subgroups that share the same observed characteristics (Crump et al., 2008;

Lee and Shaikh, 2013; List et al., 2019). In recent years, more adaptable approaches

for estimating heterogeneous treatment effects have emerged, often leveraging machine

learning techniques. Examples include Su et al. (2009), Hill (2011), Imai and Ratkovic

(2013), Athey and Imbens (2016), Shalit et al. (2017), Chernozhukov et al. (2018),

Wager and Athey (2018), Powers et al. (2018), Künzel et al. (2019), Hahn et al. (2020),

and Nie and Wager (2021). While subgroup analysis can yield valuable insights, it may

overlook critical aspects of treatment effect heterogeneity when essential information
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is unobserved. Most importantly, subgroup analysis cannot be used to determine the

distribution of treatment effects and the parameters derived from it. Our approach

addresses this issue.

Our work builds on the growing literature on the distribution of treatment effects.

A major strand of this literature focuses on the identification of features of the dis-

tribution of treatment effects without making any identifying assumptions. Because

point identification of features beyond the average cannot be achieved without further

assumptions, this literature uses partial identification and proposes methods to bound

features of the distribution of treatment effects (Makarov, 1982; Rüschendorf, 1982;

Frank et al., 1987; Williamson and Downs, 1990; Heckman et al., 1997; Fan and Wu,

2010; Fan and Park, 2010; Firpo and Ridder, 2019; Russel, 2021). Unfortunately, the

bounds arising from this literature are often too wide to be informative.

Another strand imposes restrictions to tighten the bounds. Manski (1997) estab-

lishes bounds under the assumption of monotone treatment response. Heckman et al.

(1997) explore bounds within the framework of a Roy model. Kim (2018) proposes

a generalization of these restrictions by considering support restrictions on potential

outcomes. Using the same data as in our analysis, Kline and Tartari (2016) derive

bounds from restrictions on revealed preferences. Frandsen and Lefgren (2021) assume

that potential outcomes are mutually stochastically increasing. Lee (2022) imposes

stochastic dominance assumptions to bound the conditional distribution of treatment

effects. While restrictions can substantially tighten the bounds on the distribution of

treatment effects, there is no guarantee that these bounds will necessarily provide use-

ful insights in empirical applications. Moreover, restrictions are often implausible in

real-world settings.4

Our approach shares a conceptual link with Frandsen and Lefgren (2021), who

consider the correlation between predicted treatment and control outcomes to draw

inferences about the correlation between potential outcomes. We show that the rank

correlation coefficient between potential outcomes is identified if highly predictive co-

variates are available and if all permutations of observation units satisfying the RCP are
4For example, Kline and Tartari (2016) refer to instances where decision makers have been found

violating revealed preference restrictions. Frandsen and Lefgren (2021) advise against applying their
approach if, for instance, unobserved characteristics are expected to be advantageous in the control
state but detrimental in the treatment state.

5



equally likely. There is also a connection between our approach and the work of Fan and

Park (2009), who show that knowledge of the specific value of Kendall’s (1938) rank cor-

relation coefficient between potential treatment and control outcomes does not improve

the bounds on the distribution of treatment effects if the rank correlation coefficient

is positive. We do not consider bounds on the distribution of treatment effects be-

cause we observe that the distribution of permutation-specific GQTE is approximately

normal for each quantile. This finding strongly supports our focus on averages associ-

ated with equally likely permutations, rather than on bounds linked to permutations

of observation units with near-zero probability of occurrence.

Our approach is more directly related to the work of Heckman et al. (1997), who

derive features of the ‘impact distribution’ assuming knowledge of the rank correlation

coefficient between potential outcomes.5 Heckman et al. (1997) pair percentiles of the

marginal distributions of treatment and control outcomes to estimate the mean of fea-

tures of the impact distribution. They use random permutations of percentiles that

produce a given rank correlation coefficient and consider each permutation as equally

likely. We employ a similar approach by using random permutations of observation

units satisfying the RCP. While Heckman et al. (1997) obtain average features of the

impact distribution from permutations of percentiles, we obtain features of average

unit-level treatment effects from permutations of observation units.6

3 Basic ideas and parameters of interest

Before defining our parameters of interest, we introduce some notation, drawing upon

the potential outcomes framework introduced by Rubin (1974). Following Imbens and

Rubin (2015), we consider a super-population of size Nsp, where Nsp is large but count-

able. Throughout the paper, we use the subscript ‘sp’ to refer to the super-population.

For each unit i in the super-population, i ∈ {1, . . . ,Nsp}, we define the potential out-
5Several other studies impose restrictions on the dependence between potential outcomes and unob-

servables to identify the joint outcome distribution. Abbring and Heckman (2007) provide an overview
of this literature.

6We illustrate in Section 6.2 that the impact distribution proposed by Heckman et al. (1997) captures
the full amount of heterogeneity in the data by averaging over permutation-specific treatment effects
that were arranged in ascending order, regardless of the location of control outcomes. In contrast, our
identification strategy yields a distribution of treatment effects that is made up of average unit-level
treatment effects associated with unit-level control outcomes.
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comes Yi(1) and Yi(0), which are viewed as fixed. We define a treatment indicator,

denoted as Di, which takes on the value 1 if unit i is assigned to the treatment group,

and 0 otherwise. For each unit i, only the potential outcome corresponding to their ac-

tual treatment received can be observed: Yi = Yi(1)Di +Yi(0)(1−Di). We also consider

a k-dimensional set of covariates Xi.

We present two commonly used assumptions regarding the assignment of units to

treatment and control groups. One assumption asserts that units are assigned randomly:

Assumption 1 (Random Assignment): Yi(1), Yi(0) á Di.

Random assignment ensures that any differences between treatment and control out-

comes are solely attributable to the treatment. Another commonly used assumption

is the ‘strong ignorability’ assumption introduced by Rosenbaum and Rubin (1983).

Under strong ignorability, the assignment of observation units to treatment and control

groups is viewed as random (or as good as random), conditional on a set of covariates.

The strong ignorability assumption can be stated as follows:

Assumption 2 (Strong Ignorability):

(a) (Unconfoundedness): Yi(1), Yi(0) á Di∣Xi.

(b) (Common Support): 0 < Pr(Di = 1∣Xi = x) < 1.

Assumption 2(a) is commonly referred to as ‘unconfoundedness’ (Rubin, 1990) be-

cause it implies that comparing units that share the same characteristics is sufficient

to eliminate all confounding.7,8 There are many situations in which this assumption is

violated because selection is based on unobservables.9 Assumption 2(b) requires the

presence of both treated and untreated units for each value of X = x.
7Assumption 2(a) is also known as ‘ignorability’ (Rosenbaum and Rubin, 1983), ‘selection on ob-

servables’ (Heckman and Robb, 1985) and ‘conditional independence assumption’ (Lechner, 1999).
8Many studies assume unconfoundedness to identify average treatment effects although their identi-

fication only requires a conditional mean independence assumption (i.e., E[Yi(d)∣Xi,Di] = E[Yi(d)∣Xi],
with d = {0,1}), which is considerably weaker than uncounfoundedness (Heckman et al., 1998). In our
case, unconfoundedness is relevant because we are not just interested in the mean but also in the
quantiles of the distribution of treatment effects.

9Heckman and Vytlacil (2007) and Abbring and Heckman (2007) provide an overview of possible
solutions associated with selection on unobservables.
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Throughout the paper, we use FA(a) to denote the distribution function of a ran-

dom variable A and FA∣B=b(a∣B = b) to denote the distribution function of A conditional

on B = b. Moreover, for u ∈ (0,1), we define qu(FA(a)) = inf{q ∶ Pr(A ≤ q) ≥ u} as the

quantile function of the distribution function FA(a). We are particularly interested in

the distribution functions of the potential outcomes, FY (1)(y) and FY (0)(y). Following

Rubin (1974), we consider the difference between potential outcomes, ∆i = Yi(1)−Yi(0),

which allows us to specify the distribution function of treatment effects, F∆(δ). Our

parameters of interest are formally defined as follows.

Definition 1 (Population Quantiles of the Distribution of Treatment Effects):

For u ∈ (0,1), the Population Quantiles of the Distribution of Treatment Effects are

given by

q∆,u = qu(F∆(δ)) = inf{δ ∶ 1

Nsp

Nsp

∑
i=1

1{∆i ≤ δ} ≥ u}. (1)

While this paper focuses on the Population Quantiles of the Distribution of Treat-

ment Effects (PQDTE), similar results can be obtained for the Population Quantiles of

the Distribution of Treatment Effects on the Treated (PQDTT), qu(F∆∣D=1(δ∣D = 1)).

We consider two different estimands: Quantiles of the Impact Distribution (QID) and

Quantiles of the Distribution of Treatment Effects (QDTE). Our use of QID is inspired

by Heckman et al. (1997), who present estimates of quantiles of the ‘impact distribu-

tion’. Our QID estimator relies on quantiles of the distribution of unit-level treatment

effects. While QID capture the full spectrum of heterogeneity in the data, they ignore

that unit-level treatment effects associated with units having similar or identical control

outcomes may be vastly different. We demonstrate that rearranging unit-level treat-

ment effects by control outcome yields a generalized version of quantile treatment effects

(GQTE), which do not require imposing a rank invariance assumption but align with

conventional quantile treatment effects (QTE) under rank invariance. If the GQTE are

monotonically increasing, they coincide with QDTE.
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4 Identification

4.1 Measuring rank dependence

We use Kendall’s (1938) rank correlation coefficient to specify the degree of rank de-

pendence between potential outcomes in the treatment and control state. We consider

the potential outcomes in the super-population. For any two pairs (Yi(1), Yi(0)) and

(Yj(1), Yj(0)), i, j ∈ {1, . . . ,Nsp}, we define the product πij = (Yi(1) − Yj(1))(Yi(0) −

Yj(0)) as concordant if πij > 0 and as discordant if πij < 0. The total number of compa-

rable pairs is Nsp(Nsp − 1)/2. Given the number of concordant and discordant pairs, pc

and pd, Kendall’s (1938) rank correlation coefficient between potential treatment and

control outcomes in the super-population may be written as

τ̃sp = (pc − pd)/(Nsp(Nsp − 1)/2). (2)

Throughout this paper, we consider a modified version of the rank correlation coef-

ficient, which adjusts for ties,

τsp = (pc − pd)/
√

((Nsp(Nsp − 1)/2) − pa)((Nsp(Nsp − 1)/2) − pb), (3)

where pa = ∑s1
i=1 ai(ai − 1)/2 and pb = ∑s0

j=1 bj(bj − 1)/2, and where ai (bj) is the number

of tied Y (1) (Y (0)) values in the ith (jth) set of ties, with s1 (s0) denoting the number

of sets (Kendall and Gibbons, 1990).

In the following, we will use the notation ‘τ(V1,V0)’ to denote the rank corre-

lation coefficient between two vectors V1 and V0 of equal length. Given the vec-

tors Ysp(1) = (Y1(1), . . . , YNsp(1))′ and Ysp(0) = (Y1(0), . . . , YNsp(0))′, we refer to

the case in which τsp = τ(Ysp(1),Ysp(0)) = 1 as perfect positive rank dependence.

In this case, we can compare the highest ranked outcome in Ysp(1) to the high-

est ranked outcome in Ysp(0), the second-highest ranked outcome in Ysp(1) to the

second-highest ranked outcome in Ysp(0), and so on. Similarly, we refer to the case

in which τsp = τ(Ysp(1),Ysp(0)) = −1 as perfect negative rank dependence. This case

involves comparing the lowest ranked outcome in Ysp(1) to the highest ranked outcome

in Ysp(0), the second-lowest ranked outcome in Ysp(1) to the second-highest ranked
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outcome in Ysp(0), and so on. Heckman et al. (1997) use perfect positive and nega-

tive rank dependence to obtain bounds on the distribution of treatment effects. They

conclude that these bounds are too wide to provide meaningful insights.

4.2 Rank invariance

Rank invariance refers to the case of perfect positive rank dependence between poten-

tial treatment and control outcomes. The rank invariance assumption can be stated as

follows.

Assumption 3 (Rank Invariance): τsp = 1.

Under Assumption 3, the identification of our parameters of interest relies on knowl-

edge of the separate marginal distributions of potential treatment and control out-

comes. For v ∈ (0,1), the QTE under rank invariance as defined by Doksum (1974) and

Lehmann (1974) may be written as

QTEv = qv(FY (1)(y)) − qv(FY (0)(y)).

For u ∈ (0,1), identification of q∆,u under Assumptions 1 and 3 follows from identi-

fication of the marginal distributions FY (1)(y) and FY (0)(y) under random assignment.

Fan and Park (2009) establish that the q∆,u are identified if the QTEv are monotoni-

cally increasing in v. If the QTEv are not monotonically increasing in v, then they have

to be rearranged to coincide with the q∆,u. Formally, if the QTEv are monotonically

increasing in v, then

q∆,u = qu(F∆(δ)) (4)

= qv(FY (1)(y)) − qv(FY (0)(y))

= qv(FY (1)∣D=1(y∣D = 1)) − qv(FY (0)∣D=0(y∣D = 0))

= qv(FY ∣D=1(y∣D = 1)) − qv(FY ∣D=0(y∣D = 0)).

The first equality in (4) follows from Definition 1. The second equality follows from

Assumption 3 and from the proof of Lemma 4 in Fan and Park (2009). The third
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equality follows from Assumption 1. The fourth equality follows from Yi = Yi(1)Di +

Yi(0)(1 −Di).

Our parameters of interest are also identified when we replace Assumptions 1 and 3

by Assumptions 2 and 3. Under Assumption 2, the marginal distributions FY (d)(y),

with d = {0,1}, are identified through

FY (d)(y) = ∫ FY (d)∣X=x,D=d(y∣X = x,D = d)dFX(x). (5)

Identification of our parameters of interest follows from the identification of QTEv =

qv(FY (1)(y))− qv(FY (0)(y)). If the QTEv are monotonically increasing in v, then q∆,u =

qv(FY (1)(y))−qv(FY (0)(y)). Similar to (4), if theQTEv are not monotonically increasing

in v, they have to be rearranged to coincide with our parameters of interest.

4.3 Imperfect rank dependence

In this section, we consider identification under Assumption 1 in situations where 0 ≤

τsp ≤ 1. We ignore situations where τsp < 0 because they are expected to be uncommon in

real-world applications. Extending our approach to these situations is straightforward.

Moreover, we focus on the special case in which treatment and control group sizes are

equal. Specifically, in the super-population of size Nsp, N1
sp units are randomly assigned

to the treatment group and N0
sp = Nsp −N1

sp units are randomly assigned to the control

group, with N1
sp = N0

sp = Nsp/2. We discuss more general cases in Section 4.4 below.

4.3.1 Rank correlation coefficient

We define Yid = Yi if Di = d, d ∈ {0,1}, and consider the ((Nsp/2) × 1)-vectors of

observable treatment and control outcomes Ysp,d = (Y1d, . . . , Y(Nsp/2)d)′. Because the

ranks of Ysp,1 relative to the ranks of Ysp,0 are unknown, we consider all possible

permutations of observable treatment outcomes and define the ((Nsp/2) × (Nsp/2))-

permutation matrix Πsp,p, p ∈ Psp = {1, . . . , (Nsp/2)!}.10

10Instead of keeping the ranks of Ysp,0 fixed and considering permutations of Ysp,1, an alternative
approach involves keeping the ranks of Ysp,1 fixed and considering permutations of Ysp,0. We have
chosen the former approach because it enables us to determine the average unit-level treatment effect
on control group members if they had received the treatment. Moreover, this approach allows us to
sort the average unit-level treatment effects by control outcome to obtain the GQTE. See Section 6.2
for details.

11



Under Assumption 1, the rank correlation coefficient between potential treatment

and control outcomes may be written as

τsp = ∑
p∈Psp

Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp]τ(Πsp,pYsp,1,Ysp,0). (6)

Equation (6) illustrates that knowledge of the probabilities Pr[τ(Πsp,pYsp,1,Ysp,0) =

τsp], p ∈ Psp, would solve the identification problem. To make progress towards this goal,

we use the set of covariates to obtain predicted outcomes. We define the (Nsp × k)-

covariate matrix Xsp and the corresponding ((Nsp/2) × k)-covariate matrix Xsp,0 for

members of the control group. We obtain the rank correlation coefficients between

actual and predicted outcomes in three steps:

1. We calculate the predicted outcomes Ŷsp = Xsp(X′
sp,0Xsp,0)−1X′

sp,0Ysp,0.11 We

use the elements of the (Nsp × 1)-vector Ŷsp = (Ŷ1, . . . , ŶNsp)′ to define Ŷid = Ŷi if

Di = d, d ∈ {0,1}, and consider the ((Nsp/2) × 1)-vectors of predicted treatment

and control outcomes Ŷsp,d = (Ŷ1d, . . . , Ŷ(Nsp/2)d)′.

2. We obtain the rank correlation coefficient between actual and predicted outcomes

for members of the control group, τ(Ysp,0, Ŷsp,0).

3. We obtain the rank correlation coefficient between actual and predicted outcomes

for members of the treatment group, τ(Ysp,1, Ŷsp,1).

In the following, we focus on situations where ∣τ(Ysp,0, Ŷsp,0)∣ ≥ ∣τ(Ysp,1, Ŷsp,1)∣. Fo-

cusing on these situations greatly facilitates the presentation of our approach. We ignore

situations where ∣τ(Ysp,0, Ŷsp,0)∣ < ∣τ(Ysp,1, Ŷsp,1)∣ because they are rare in empirical

applications. We leave the study of these situations for future work.12

11Alternative methods, including machine learning algorithms, can be used to predict the values or
ranks of the observed outcomes. We obtain predicted outcomes in a linear regression framework and
consider continuous outcome variables because we find that this approach is sufficient to fit the data
used in our empirical application. To mitigate potential problems associated with overfitting, we use
the same set of covariates as in Bitler et al. (2006).

12The experimental study of Gillitzer and Sinning (2020) provides an example in which the out-
of-sample prediction of ranks is stronger than the in-sample prediction. The authors investigate the
effectiveness of a reminder from the tax office on tax payments. Instead of observing pre-intervention
outcomes, they observe the initial amount of tax owed, which is a strong predictor of tax payments of
the treatment group (who receive a reminder) but a relatively weak predictor of tax payments of the
control group (who do not receive a reminder).
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We make the following assumption about the relevance of predictors:

Assumption 4 (Relevance of predictors): τ(Ysp,0, Ŷsp,0) is positive and sufficiently

large.

Assumption 4 requires the availability of relevant control outcome predictors. The

set of covariates used in our analysis contains pre-intervention outcomes, which consti-

tute strong predictors of post-intervention control outcomes. We are able to formally

test the strength of predictors, as discussed below.

It is useful to consider the rank correlation coefficient τ(Πsp,pYsp,1, Ŷsp,0) associated

with the rank correlation coefficient τ(Πsp,pYsp,1,Ysp,0). Under Assumptions 1 and 4,

permutations of Ysp,1 must satisfy the condition τ(Πsp,pYsp,1, Ŷsp,0) = τ(Ysp,1, Ŷsp,1)

because the rank correlation coefficient between actual and predicted outcomes must

be the same, regardless of whether its calculation is based on predicted treatment or

control outcomes. We refer to this property as ‘Rank Correlation Property’ (RCP).

Permutations of Ysp,1 that do not satisfy the RCP occur with a probability of zero.13

Therefore,

τsp = ∑
p∈Ssp

Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp]τ(Πsp,pYsp,1,Ysp,0), (7)

where Ssp = {p ∈ Psp ∣ τ(Πsp,pYsp,1, Ŷsp,0) = τ(Ysp,1, Ŷsp,1)}. Equation (7) follows from

equation (6), Assumptions 1 and 4, and from

∑p∈Psp Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp]

= ∑
p∈Ssp

Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp ∣ τ(Πsp,pYsp,1, Ŷsp,0) = τ(Ysp,1, Ŷsp,1)]

× Pr[τ(Πsp,pYsp,1, Ŷsp,0) = τ(Ysp,1, Ŷsp,1)]

+ ∑
p∈S′sp

Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp ∣ τ(Πsp,pYsp,1, Ŷsp,0) ≠ τ(Ysp,1, Ŷsp,1)]

× Pr[τ(Πsp,pYsp,1, Ŷsp,0) ≠ τ(Ysp,1, Ŷsp,1)],
13It is possible to impose a more stringent version of the RCP by considering permutations that

satisfy both τ(Πsp,pYsp,1, Ŷsp,0) = τ(Ysp,1, Ŷsp,1) and τ(Πsp,pYsp,0, Ŷsp,1) = τ(Ysp,0, Ŷsp,0). While
implementing this stricter version increases complexity, sensitivity checks indicate that it yields very
similar results. We leave the use of the stricter RCP for future research.
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where S ′sp = {p ∈ Psp ∣ τ(Πsp,pYsp,1, Ŷsp,0) ≠ τ(Ysp,1, Ŷsp,1)}. Permutations that do not

satisfy the RCP occur with a probability of zero due to random assignment under

Assumption 1, Pr[τ(Πsp,pYsp,1, Ŷsp,0) ≠ τ(Ysp,1, Ŷsp,1)] = 0 for all p ∈ Psp. Using Bayes’

law, Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp] = Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp ∣ τ(Πsp,pYsp,1, Ŷsp,0) =

τ(Ysp,1, Ŷsp,1)]Pr[τ(Πsp,pYsp,1, Ŷsp,0) = τ(Ysp,1, Ŷsp,1)] for all p ∈ Ssp.

We make the following assumption about permutations with a positive probability

of occurrence:

Assumption 5 (Equally likely permutations): All permutations of treatment group

outcomes with a positive probability of occurrence are equally likely to occur.

Assumption 5 implies that

Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp] =
1{Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp] > 0}

∑p∈Psp 1{Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp] > 0}

for all p ∈ Psp. In the absence of further information, all permutations of Ysp,1 that

satisfy the RCP have a positive probability of occurrence under Assumptions 1 and 4.

Therefore, under Assumptions 1, 4, and 5, the rank correlation coefficient between

potential treatment and control outcomes is identified through

τsp = 1

nsp,p
∑

p∈Ssp

τ(Πsp,pYsp,1,Ysp,0), (8)

with nsp,p = ∑p∈Psp 1{Pr[τ(Πsp,pYsp,1,Ysp,0) = τsp] > 0} = ∑p∈Ssp 1{τ(Πsp,pYsp,1, Ŷsp,0) =

τ(Ysp,1, Ŷsp,1)}.

4.3.2 Quantiles of the distribution of treatment effects

In this section, we apply the same reasoning as in the previous section to identify our

parameters of interest under Assumptions 1, 4 and 5. We define ∆sp,p = Πsp,pYsp,1 −

Ysp,0. Under Assumption 1, the distribution of treatment effects may be written as

F∆(δ) = F∆′(δ′), (9)
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where

∆
′ = ∑

p∈Psp

Pr[F∆sp,p(δsp,p) = F∆(δ)]∆sp,p.

Knowledge of the probabilities Pr[F∆sp,p(δsp,p) = F∆(δ)], p ∈ Psp, would solve the

identification problem. Permutations of Ysp,1 that do not satisfy the RCP occur with

a probability of zero under Assumption 1. Therefore,

∆
′ = ∑

p∈Ssp

Pr[F∆sp,p(δsp,p) = F∆(δ)]∆sp,p.

In the absence of further information, all permutations of Ysp,1 that satisfy the RCP

have a positive probability of occurrence under Assumptions 1 and 4. Therefore, under

Assumptions 1, 4, and 5, the distribution of treatment effects is identified through

F∆(δ) = F∆′(δ′), (10)

where ∆
′ = 1

nsp,p
∑p∈Ssp ∆sp,p. Identification of our parameters of interest follows from

q∆,u = qu(F∆(δ)) = qu(F∆′(δ′)).

It is important to note that ∆
′ = 1

nsp,p
∑p∈Ssp Πsp,pYsp,1 −Ysp,0 involves averaging

over permutations of Ysp,1 while keeping the ranks of Ysp,0 fixed. Computing quantiles

of the distribution of permutation-specific treatment effects before averaging over per-

mutations would produce a different result. Under Assumptions 1, 4, and 5, we may

write

qQID
∆,u = ∑

p∈Psp

Pr[qu(F∆sp,p(δsp,p)) = qu(F∆(δ))]qu(F∆sp,p(δsp,p)) (11)

= 1

nsp,p
∑

p∈Ssp

qu(F∆sp,p(δsp,p)).

The parameters specified by (11) bear resemblance to those of Heckman et al. (1997)

who estimate quantiles and other parameters of the ‘impact distribution’ based on as-

sumed values of τsp. Averaging quantiles of permutation-specific distributions of treat-

ment effects ignores that the location of control outcomes changes each time the quan-
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tiles are computed. Consequently, this approach does not yield QDTE. We provide a

detailed discussion of this issue in Section 6.2.

4.4 Controlling for covariates

In this section, we extend our approach in two important ways. Firstly, we consider

identification of our parameters of interest under strong ignorability. Secondly, we proof

identification of our parameters of interest for both equal and unequal group sizes.

4.4.1 Equal group sizes

We first consider the case in which N1
sp = N0

sp to identify our parameters of interest

under Assumptions 2, 4, and 5. Using results presented in Firpo (2007), we may write

the marginal distributions FY (d)(y), d = {0,1}, in terms of inverse propensity score

weighted averages,

FY (d)(y) = 1

Nsp

Nsp

∑
i=1

wid1{Yi ≤ y}, (12)

where wi1 = Di

Pr(Di=1∣Xi) and wi0 = 1−Di

1−Pr(Di=1∣Xi) . Following Parzen (1979), we consider the

order statistics Z(1)d ≤ . . . ≤ Z(Nd
sp)d, where

Z(i)d = F −1
Y (d)[θd] = inf{y ∶ 1

Nsp

Nsp

∑
i=1

wid1{Yi ≤ y} ≥ θd}, (13)

with (i − 1)/Nd
sp < θd ≤ i/Nd

sp, i ∈ {1, . . . ,Nd
sp}. We define the (Nd

sp×1)-vectors Zsp,d =

(Z1d, . . . , ZNd
spd

)′. Reweighting can impact the within-group ranks of both observed

and predicted outcomes. The identification of our parameters of interest under As-

sumptions 2, 4, and 5 relies on using reweighted outcomes and adopting the approach

outlined in Section 4.3.2. Theorem 1 formally states this result.

Theorem 1 (Identification of q∆,u with Equal Group Sizes): Let N1
sp = N0

sp. Then,

under Assumptions 2, 4, and 5, the Population Quantiles of the Distribution of Treat-

ment Effects, q∆,u, are identified from data on (Y,D,X).
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All proofs are provided in Appendix C. Theorem 1 states that our parameters of

interest are identified from data on (Y,D,X) under Assumptions 2, 4, and 5 ifN1
sp = N0

sp.

4.4.2 Unequal group sizes

Since Assumption 2 is applicable to Nd
sp order statistics, as demonstrated in the previous

section, it also extends to multiples of Nd
sp order statistics. We leverage this property

to describe the quantile functions of treatment and control outcomes using N1
spN

0
sp

values.14 Formally, we consider the order statistics Z(1)d ≤ . . . ≤ Z(N1
spN

0
sp)d, where Z(i′)d =

inf{y ∶ 1
Nsp
∑Nsp

i=1 wid1{Yi ≤ y} ≥ θd} with (i′ − 1)/(N1
spN

0
sp) < θd ≤ i′/(N1

spN
0
sp), i′ ∈

{1, . . . ,N1
spN

0
sp}. Moreover, we define the (N1

spN
0
sp × nd)-transformation matrix Msp,d

that transforms the (Nd
sp × 1)-vectors Zsp,d into the (N1

spN
0
sp × 1)-vectors

Msp,dZsp,d = (Z1d, . . . , Z1d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N1−d
sp

, . . . , ZNd
spd
, . . . , ZNd

spd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N1−d

sp

)′.

Considering N1
spN

0
sp values of the order statistics allows us to obtain a generalized

version of Theorem 1, which involves using the transformed outcome variables Msp,dZsp,d

instead of Zsp,d. While using N1
spN

0
sp order statistics addresses the problem of unequal

group sizes, the challenges resulting from uncertainty about the ranking of treatment

outcomes relative to control outcomes remain unchanged. The identification of our pa-

rameters of interest continues to be based on permutations of Zsp,1. Theorem 2 states

our main result.

Theorem 2 (Identification of q∆,u): Under Assumptions 2, 4, and 5, the Popula-

tion Quantiles of the Distribution of Treatment Effects, q∆,u, are identified from data

on (Y,D,X).

Theorem 2 states that our parameters of interest are identified from data on (Y,D,X)

under Assumptions 2, 4 and 5. Because Theorem 2 holds for any N1
sp,N

0
sp ∈ N+, it in-

cludes Theorem 1 as a special case. In the case of rank invariance, our parameters of
14Applying this approach to large samples may pose computational challenges. However, the use of

frequency weights can substantially alleviate this issue by reducing the necessary number of rows in a
transformed dataset.
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interest simplify to q∆,u = qv(FZ1(z1)) − qv(FZ0(z0)), where Z1 = Msp,1Πsp,pZsp,1 and

Z0 = Msp,0Zsp,0.15 As noted earlier, the differences between quantiles have to be mono-

tonically increasing in v to obtain this result.

5 Estimation

Using the framework introduced by Imbens and Rubin (2015), we consider a finite

Simple Random Sample (SRS) of fixed size N drawn from the super-population and

define Ri as a sampling indicator, which takes on the value 1 if unit i is sampled, and 0

otherwise. We define the treatment indicator Wi, which takes on the value 1 if unit i is

sampled and assigned to the treatment group, and 0 if unit i is assigned to the control

group. We simplify the presentation by assigning all unsampled units to the control

group, implying Wi = 0 if Ri = 0.

We observe N1 units randomly assigned to the treatment group and N0 = N −N1

units randomly assigned to the control group. We define the (N×1)-vectors of potential

outcomes in the finite sample, Y(d) = (Y1(d), . . . , YN(d))′, d = {0,1}. We also define

the (Nd ×1)-vectors of observed treatment and control outcomes, Yd = (Y1d, . . . , YNdd)′.

We consider the (N × k)-covariate matrix X and the corresponding (N0 × k)-covariate

matrix X0 of the control group sample. Using the control group sample, we estimate a

linear regression model to obtain the parameter vector γ̂0 = (X′
0X0)−1X′

0Y0. The vector

of predicted values is given by Ŷ = Xγ̂0. Using the elements of Ŷ, we define Ŷid = Ŷi
if Wi = d and consider the (Nd × 1)-vectors of predicted values Ŷd = (Ŷid, . . . , ŶNdd).

Moreover, we define the (N1 ×N1)- permutation matrix Πp, p ∈ P = {1, . . . ,N1!}.

Given the sample Y1, . . . , YN , the empirical distribution functions of FY (d)(y) may be

written as F̂Y (d)(y) = 1
N ∑

N
i=1wid1{Yi ≤ y}, where wi1 = Wi

Pr(Wi∣Xi) and wi0 = 1−Wi

1−Pr(Wi=1∣Xi) .

For

i′ ∈ {{j11, . . . , j1N(1−d)}, . . . ,{jNd1, . . . , jNdN(1−d)}} = {1, . . . ,N1N0},

we define the order statistics Z(1)d ≤ . . . ≤ Z(N1N0)d as values of the empirical quantile

function of continuous and monotonically increasing empirical distribution functions
15Figure A3d demonstrates that our approach produces very similar results to the approach of Firpo

(2007) under rank invariance.
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F̂Y (d)(y),

Z(i′)d = F̂ −1
Y (d)[θd] = inf{y ∶ 1

N

N

∑
i=1

wid1{Yi ≤ y} ≥ θd},

with (i′ − 1)/(N0N1) < θd ≤ i′/(N0N1), i′ ∈ {1, . . . ,N0N1}. We define the (N1N0 × 1)-

vectors

Vd = (Z(j11)d, . . . , Z(j1N(1−d))d, . . . , Z(jNd1
)d, . . . , Z(jNdN(1−d))d

)′

= (Z(1)d, . . . , Z(1)d,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N(1−d)

. . . , Z(Nd)d, . . . , Z(Nd)d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N(1−d)

)′,

where

Z(i)d = F̂ −1
Y (d)[θd] = inf{y ∶ 1

N

N

∑
i=1

wid1{Yi ≤ y} ≥ θd},

with (i − 1)/Nd < θd ≤ i/Nd, i ∈ {1, . . . ,Nd}. We define the (Nd × 1)-vectors Zd =

(Z1d, . . . , ZNd
d)′. Similarly, we define

Ẑ(i)d = inf{ŷ ∶ 1

N

N

∑
i=1

wid1{Ŷi ≤ ŷ} ≥ θd}

and the (Nd × 1)-vectors Ẑd = (Ẑ1d, . . . , ẐNdd)′. We consider the permutations ΩdVd =

MdZd, where Ωd are (N1N0×N1N0)-permutation matrices that transform the (Nd×1)-

vectors Zd into the vectors (N1N0 × 1)-vectors

MdZd = (Z1d, . . . , Z1d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N(1−d)

, . . . , ZNdd, . . . , ZNdd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N(1−d)

)′.

5.1 Rank correlation coefficient

Our estimator of the rank correlation coefficient between potential treatment and con-

trol outcomes τsp is given by

τ̂ = 1

np
∑
p∈S

τ(M1ΠpZ1,M0Z0),
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where S = {p ∈ P∣τ(M1ΠpZ1,M0Ẑ0) = τ(Z1, Ẑ1)} and np = ∑p∈S 1{τ(M1ΠpZ1,M0Ẑ0) =

τ(Z1, Ẑ1)}.

Under Assumption 1, our estimator simplifies to τ̂ = 1
np
∑p∈S τ(M1ΠpY1,M0Y0).

When treatment and control group sample sizes are equal, N1 = N0 = N/2, it further

simplifies to τ̂ = 1
np
∑p∈S τ(ΠpY1,Y0).

Due to the large number of possible permutations, we use the following steps to

estimate τsp in our empirical application:

1. We search for a random permutation of Z1 that satisfies τ(M1ΠpZ1,M0Ẑ0) =

τ(Z1, Ẑ1) and calculate τ(ΠpZ1,Z0).

2. We repeat the previous step P times.

3. We calculate τ̂P = 1
P ∑

P
p=1 τ(M1ΠpZ1,M0Z0).

Table 1 presents estimates of τsp for alternative values of τ(Y0, Ŷ0) and τ(Y1, Ŷ1)

based on simulation data. Each estimate involves 100 random permutations of 2 × 16,772

observation units (N1 = N0 = N/2=16,772), consistent with the restricted analysis sam-

ple using in our application below. For simplicity, we consider a model with a single

continuous covariate and exclude the possibility of ties. We obtain bootstrap standard

errors for the estimated parameters by drawing a random sample with replacement,

stratified by treatment group to ensure that N1 = N0, for each permutation.16

The results in Table 1 illustrate that it is possible to obtain precise estimates of τsp,

even if the strength of the model predictors, measured by τ(Y0, Ŷ0), is only moderate.

For τ(Y0, Ŷ0) ≥ 0.3, our estimates are identical to the target values if we round to

one decimal place. For τ(Y0, Ŷ0) = 0.2, we observe reasonably precise estimates of τsp

if τsp < 0.9. However, we obtain an estimate of 0.83 if τsp = 0.9, indicating that it is

more challenging to estimate τsp when the ranks of the potential treatment and control

outcomes are highly correlated.17

<Table 1 about here.>
16The estimation of bootstrap standard errors involves the use of ties due to random sampling with

replacement.
17The reason for this result is that the underlying values of τ(Y1, Ŷ1), which are presented in

Table A1 of Appendix A, are very close to each other when τsp is close to 1 and τ(Y0, Ŷ0) is small.
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The use of simulated data to estimate target values of τsp for given values of τ(Y0, Ŷ0)

allows us to develop a statistical test for assessing the strength of model predictors,

measured by τ(Y0, Ŷ0). We test whether our estimated rank correlation coefficients

deviate significantly from these target values. We also employ a Kolmogorov-Smirnov

test to ascertain whether deviations in estimated rank correlation coefficients from tar-

get values impact our QDTE estimates. Our test results indicate that our predictors

are sufficiently strong to yield unbiased QDTE estimates. A more detailed discussion

of our test results is provided in Appendix A.

Results of Monte Carlo simulations (presented in Tables B1-B4 of Appendix B) are

in line with the findings presented in Table 1. In particular, we find that our estimator

of τsp is fairly precise even for relatively small sample sizes and unbiased if τ(Y0, Ŷ0)

is sufficiently large. Biases observed for low values of τ(Y0, Ŷ0) and large values of τsp

decline as the sample size increases. Our simulation results also confirm the validity of

estimated bootstrap standard errors.

5.2 Quantiles of the Distribution of Treatment Effects

For u ∈ (0,1), the PQDTE estimator is given by

q̂∆,u = qu(F∆obs(δobs)),

where ∆obs = 1
np
∑p∈SM1ΠpZ1−M0Z0. We impose Assumption 1 and consider the case

in which N1 = N0 = N/2 to show that q̂∆,u is an unbiased estimator of q∆,u. In this case,

our estimator may be written as

q̂∆,u = inf{δobs ∶ 1

N1

Nsp

∑
i=1

Ri(1 −Wi)1{∆obs
i ≤ δobs} ≥ u},

where ∆obs
i is the ith element of ∆obs = 1

np
∑p∈SΠpY1−Y0. Following Imbens and Rubin

(2015), we can take the expectation of our estimator over the randomization distribution
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by conditioning on the (Nsp ×1)-vector R = (R1, . . . ,RNsp)′, and on Ysp(1) and Ysp(0):

EW [q̂∆,u∣R,Ysp(1),Ysp(0)] = inf{δobs ∶ 1

N0

Nsp

∑
i=1

RiEW [1 −Wi]1{∆obs
i ≤ δobs} ≥ u}

= inf{δobs ∶ 1

N0

Nsp

∑
i=1

Ri
N0

N
1{∆obs

i ≤ δobs} ≥ u} (14)

= inf{δ ∶ 1

N

Nsp

∑
i=1

Ri1{∆i ≤ δ} ≥ u}

= qfs
∆,u,

where qfs
∆,u are the finite-population quantiles of the distribution of treatment effects.

Taking expectations over the distribution generated by the random sampling yields

Esp[qfs
∆,u∣Ysp(1),Ysp(0)] = inf{δ ∶ 1

N

Nsp

∑
i=1

Esp[Ri]1{∆i ≤ δ} ≥ u}

= inf{δ ∶ 1

N

Nsp

∑
i=1

N

Nsp
1{∆i ≤ δ} ≥ u} (15)

= inf{δ ∶ 1

Nsp

Nsp

∑
i=1

1{∆i ≤ δ} ≥ u}

= q∆,u.

We may use a similar approach to study the QID estimator

q̂ QID
∆,u = 1

np
∑
p∈S

q̂ QID
∆p,u

= 1

np
∑
p∈S

qu(F∆obs
p

(δobs
p )), (16)

where ∆obs
p = ΠpY1 −Y0. It is possible to take expectations over the randomization

distribution by conditioning on R, Ysp(1), and Ysp(0) to show that

EW [q̂ QID
∆p,u

∣R,Ysp(1),Ysp(0)] = qfs
∆p,u,

where qfs
∆p,u

are the permutation-specific finite-population quantiles of the distribution

of treatment effects. Taking expectations over the distribution generated by the random

sampling yields

Esp[qfs
∆p,u∣Ysp(1),Ysp(0)] = q∆p,u,
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where q∆p,u are the permutation-specific quantiles of the distribution of treatment effects

in the super-population. While the permutation-specific elements of the QID estimator

are unbiased, averaging over these elements does not yield q∆,u. We illustrate this issue

in our empirical application. Due to the large number of possible permutations, we use

Steps 1 and 2 presented in the previous section to obtain QDTE and QID estimates.

6 Application

6.1 Background and data

Connecticut introduced the Jobs First program in response to the nationwide man-

date for welfare reform initiated by the Personal Responsibility and Work Opportunity

Reconciliation Act in 1996. To assess the program’s effectiveness, the state conducted

a randomized experiment in collaboration with the Manpower Development Research

Corporation (MDRC). The experiment compared the Jobs First program with the pre-

vious Aid to Families with Dependent Children (AFDC) welfare program for low-income

single parents with children. Jobs First incorporates key elements commonly found in

US welfare programs, including earnings disregards, work requirements, and financial

sanctions for non-compliance with these requirements. The program introduced a com-

bination of both positive and negative work incentives. Detailed descriptions of the key

elements of Jobs First and AFDC can be found in Bitler et al. (2006) and Kline and

Tartari (2016).

Our analysis relies on public use files from MDRC’s experimental evaluation of

Connecticut’s Jobs First waiver from AFDC rules. The files contain rounded data on

quarterly earnings, as well as monthly welfare and food stamps income, covering a

period of two years leading up to program assignment and extending for a minimum

of four years thereafter. Following Bitler et al. (2006), our analysis focuses on three

outcome variables: earnings, transfers (cash welfare plus food stamps), and income

(the sum of earnings and transfers). MDRC’s dataset contains a sample of 4,803 cases,

with 2,396 assigned to Jobs First and 2,407 to AFDC. To obtain an analysis sample with

equal treatment and control group sizes, we randomly exclude 11 observations from the

AFDC sample to create a restricted AFDC sample of 2,396 observations. This sample

23



restriction enables us to illustrate our approach for equal group sizes. Subsequently, we

expand our approach to accommodate scenarios in which treatment and control group

sizes differ.

Table 2 replicates the summary statistics of pre-treatment characteristics presented

in Bitler et al. (2006) and provides additional results for the restricted AFDC sample.

We observe that the exclusion of 11 randomly chosen observations from the AFDC

sample has no significant impact on the sample means, with all p-values associated

with the comparison of group means of unrestricted and restricted AFDC samples

exceeding 0.9.

<Table 2 about here.>

Because our approach relies on predicting values or ranks of observed outcomes, we

employ the same set of covariates as used in Bitler et al. (2006) to mitigate potential

problems associated with overfitting. A complete list of covariates can be found in

Appendix B of Bitler et al. (2006). We use the same set of covariates to estimate our

parameters of interest under strong ignorability.

6.2 QID, QDTE and GQTE

Heckman et al. (1997) pair percentiles of marginal distributions of treatment and control

outcomes to calculate the mean of parameters of the impact distribution. They use

random permutations of percentiles to achieve a given value of τsp.18 We modify their

approach in two ways that have minimal impact on our results. Firstly, we use restricted

analysis samples with equal treatment and control group sizes. This change enables us to

consider random permutations of unit-level outcomes instead of relying on percentiles of

marginal distributions of treatment and control outcomes. This modification produces

slightly more accurate results. The impact of imposing sample restrictions is negligible

in our application, as demonstrated below (see Figure A3 in Appendix A).

Secondly, instead of assuming a specific value of τsp, we focus on random permuta-

tions that satisfy the RCP. Figures 1a and 1b depict the distributions of rank correlation

coefficients resulting from 100 random permutations of Y1 that satisfy the RCP. We ob-

serve that the rank correlation distributions are relatively narrow, suggesting that QID
18See the discussion related to Table 5A in Heckman et al. (1997) for details.
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estimates based on the RCP will closely resemble QID estimates based on a fixed value

of τsp that coincides with the support of the corresponding rank correlation distribution.

Given these modifications, our QID estimator may be written as

QID = 1

P

P

∑
p=1

qu(F∆obs
p

(δobs
p )), (17)

where ∆obs
p = ΠpY1 −Y0. Figures 1c-1h present QID estimates for earnings, transfers,

and income in pre- and post-time limit periods based on our restricted analysis samples.

The figures confirm that the discrepancy between the percentile approach, which relies

on permutations consistent with a fixed value τ̂ , and the use of unit-level treatment

effects in conjunction with the RCP is negligible.

<Figure 1 about here.>

Even though our data is entirely different from that used by Heckman et al. (1997),

we observe similar overall patterns in our findings. Specifically, we notice substantially

larger extremes (both positive and negative) in the tails of the impact distributions

for lower values of τ̂ . For example, in the case of earnings during the pre-time limit

period (Figure 1c) based on τ̂ = 0.71, the values of the impact distribution range from

approximately −$1,300 to $1,400. In the case of earnings during the post-time limit

period (Figure 1d) based on τ̂ = 0.62, the corresponding values of the impact distribution

range from approximately −$3,100 to $3,100. We observe similar patterns for transfers

(Figures 1e-1f) and income (Figures 1g-1h).19

Heckman et al. (1997) conclude that impact distributions require a high degree

of positive rank dependence because low values of τsp produce negative values of the

impact distribution that are too large to be plausible.20 In the following, we offer

an alternative explanation. Using our restricted analysis sample for the pre-time limit

period, we obtain permutation-specific QID estimates for selected random permutations

of income. We present three permutation-specific impact distributions in Figures 2a-2c.
19We find that the rank correlation coefficients during the post-time limit period are lower than those

observed during the pre-time limit period due to greater mobility with time after the intervention.
20Using data on earnings of women aged 22 and above from an experimental evaluation of training

programmes financed under Title IIA of the US Job Training Partnership Act (JTPA), they argue that
their results are only reasonable for τsp ≥ 0.8.
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We also select a control group member whose income matches the median control group

income and pinpoint their location on each permutation-specific impact distribution.

We observe that the selected control group member is located near the lower end

of the first permutation-specific impact distribution (Figure 2a), near the median of

the second distribution (Figure 2b), and near the upper end of the third distribution

(Figure 2c). This finding illustrates that our parameters of interest cannot be obtained

by averaging over quantiles of permutation-specific impact distributions because this

approach fails to capture the underlying unit-level treatment effect we would expect to

observe for any given member of the control group.

<Figure 2 about here.>

Figure 2d presents both average unit-level treatment effects and QDTE estimates.

Our findings indicate that the Jobs First program led to income increases across the

entire income distribution during the pre-time limit period. This finding is broadly con-

sistent with the results of Bitler et al. (2006), who report non-negative QTE estimates

across the income distribution during the pre-time limit period. However, while Bitler

et al. (2006) find zero QTE estimates for the bottom 10 quantiles due to zero income in

both groups, our QDTE estimates are strictly positive. This difference arises because we

compare each control group member to a set of treatment group members associated

with random permutations that satisfy the RCP. In the absence of rank invariance,

we compare control group members with zero income to treatment group members

whose income is either zero or positive. Consequently, averaging over the distribution

of permutation-specific treatment effects produces positive QDTE estimates.21

Rearranging the average unit-level treatment effects shown in Figure 2d yields

GQTE estimates, which are presented in Figure 2e. GQTE estimates are obtained

by averaging over average unit-level treatment effects within quantile groups of the

control outcome. This approach provides us with a generalized summary measure of

quantile treatment effects that does not rely on a rank invariance assumption. The

GQTE provides an estimate of the treatment effect that would have been observed if

control group members at a given point of the control outcome distribution, such as the
21An important challenge in estimating QDTE in real-world applications is the handling of ties. We

address this challenge by maintaining a random but fixed ranking of ties in control group outcomes,
while allowing for varying ranks of treatment group outcomes through alternative permutations.

26



median, had received the treatment. Calculating the average within quantile groups is

essential to obtain a measure that captures the heterogeneity around the ATE.22

Another perspective on GQTE estimates is to view them as averages of permutation-

specific GQTE estimates. Permutation-specific GQTE estimates are obtained by aver-

aging unit-level treatment effects within quantile groups of the control outcome. They

differ from permutation-specific QID estimates in terms of how the unit-level treat-

ment effects are aggregated. While permutation-specific QIDs capture the full extent

of treatment effect heterogeneity in the data, permutation-specific GQTEs aggregate

both positive and negative unit-level treatment effects within quantile groups. In con-

trast to permutation-specific QIDs, permutation-specific GQTEs have the property that

control group members at the median of their outcome distribution are always located

at the median, regardless of the chosen permutation.

We use permutation-specific GQTEs for income during the pre-time limit period to

illustrate the implications of imposing Assumption 5. Figure A2 in Appendix A presents

the density functions of permutation-specific GQTEs at selected quantiles, along with

the GQTE and associated density functions across quantiles. We observe that the

density functions approximate normal distributions as the number of permutations

increases (Figures A2a-A2e). We also find that 50 percent of the probability mass

of the density functions concentrates near the GQTE (Figure A2f), providing strong

support for calculating averages in accordance with Assumption 5. Additionally, our

findings illustrate the potential for developing tests to compare alternative identifying

assumptions, such as comparing GQTE based on Assumption 5 to GQTE based on

alternative weighting schemes.

Figure 2f demonstrates that our approach yields nearly identical results to the con-

ventional QTE approach under rank invariance. While the conventional QTE approach

involves calculating quantiles of separate marginal distributions of treatment and con-

trol outcomes, our approach is based on averaging unit-level treatment effects within

quantile groups of control outcomes. In cases where the rank invariance assumption

holds, we have no basis for favoring one approach over another. However, in contrast to

our approach, the conventional QTE approach can only be applied if the rank invariance
22Using the median instead of the average within quantile groups, for example, could potentially

yield non-positive treatment effects across the entire distribution, even though the ATE is positive.
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assumption holds.

6.3 Quantiles of the distribution of treatment effects

Figure 3 presents QDTE estimates for earnings, transfers, and income, both before and

after time limits take effect. In line with the results of Bitler et al. (2006) presented in

Figure A1, we find substantial heterogeneity in responses to the welfare reform. During

the pre-time limit period, we observe a range of effects on earnings, spanning from

approximately −$470 to $370 (Figure 3a). This range broadly aligns with the range

of −$300 to $500 depicted in Figure A1a. However, after time limits take effect, we

discover a much wider range of effects on earnings, varying from approximately −$1,020

to $900 (Figure 3b), which differs considerably from the corresponding range of −$100

to $800 presented in Figure A1b.

<Figure 3 about here.>

The effects of Jobs First on transfers during the pre-time limit period span a range of

approximately −$30 to $540 (Figure 3c), compared to the range of $0 to $700 observed

in Figure A1c. The effects on transfers during the post-time limit period range from

approximately −$470 to $200 (Figure 3d), which broadly aligns with the range of −$550

to $100 presented in Figure A1d. The effects on income are largely driven by the

patterns observed for earnings. The effects on income during the pre-time limit period

(Figure 3e), ranging from approximately $40 to $570, are similar to the range of $0

to $800 observed in Figure A1e. In contrast, the effects on income, ranging from

approximately −$940 to $880 (Figure 3f), deviate substantially from the range of −$300

to $300 presented in Figure A1f.

In contrast to the results of Bitler et al. (2006), which rely on rank invariance, our

findings explicitly account for rank changes. We obtain rank correlation coefficients be-

tween potential treatment and control outcomes ranging from approximately 0.7 to 0.8

during the pre-time limit period. While Bitler et al. (2006) maintain the rank invariance

assumption across time periods, our analysis reveals a considerable decline in the es-

timated rank correlation between potential treatment and control outcomes over time,

reaching approximately 0.6 to 0.7 during the post-time limit period. The dramatic
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differences in the effects on earnings and income during the post-time limit period can

be attributed to mobility over time following the intervention.

6.4 Generalized quantile treatment effects

Figure 4 depicts GQTE estimates for earnings, transfers, and income during pre- and

post-time limit periods. Bitler et al. (2006) find that Jobs First had no impact at

the bottom of the earnings distribution, increased earnings in the middle, and reduced

earnings at the top before time limits took effect (Figure A1a).23 Our GQTE estimates

largely support this overall conclusion (Figure 4a). However, when accounting for the

possibility of rank changes, we observe small positive effects at the bottom of the earn-

ings distribution, with a gradual increase from $55 at quantile 1 to $250 at quantile 45,

and a further rise to $355 at quantile 54. These effects can be attributed to underlying

positive average unit-level treatment effects. Specifically, we compare women in the

AFDC group with zero earnings to women in the Jobs First group who have either zero

or positive earnings.24 In contrast, Bitler et al. (2006) report effects that are exactly

zero for the first 48 quantiles of the earnings distribution because earnings are equal to

zero for 48 percent of person quarters in the Jobs First sample and 55 percent of person

quarters in the AFDC sample.

After time limits take effect, Bitler et al. (2006) observe relatively large positive

effects in the middle of the earnings distribution but find no impact at the bottom

and top segments (Figure A1b). This finding suggests that the implementation of

time limits, which render Jobs First women ineligible for welfare benefits (with possible

extensions for some), reinforces positive earnings effects while eliminating negative ones.

In contrast, our GQTE estimates reveal increases in both positive effects at the lower
23Zero effects observed at the bottom of the earnings distribution can be attributed to the comparison

of women without earnings in both groups. According to static labor supply theory, assignment to
Jobs First should lead to increased earnings, transfers, and income in the middle of the distribution
if substitution effects dominate income effects. Negative effects of Jobs First on earnings at the top
of the distribution may be attributed to the behavioral-induced eligibility effect (Ashenfelter, 1983).
This effect arises from individual decisions to reduce labor supply (and earnings) in order to increase
welfare payments.

24This approach is consistent with static labor supply theory. Bitler et al. (2006) note that if a
woman with zero earnings in the AFDC group was assigned to the Jobs First group, she could either
continue to have zero earnings or enter the labor market and increase her income while still receiving
the same amount of transfers. Therefore, the expected unit-level treatment effect for this woman is
positive.
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end of the earnings distribution, ranging from $153 at quantile 1 to $840 at quantile 46,

and negative effects at the higher end, ranging from −$18 at quantile 60 to −$1,076 at

quantile 98 (Figure 4b). Although incentives to reduce earnings to receive higher welfare

payments disappeared with the implementation of time limits, our findings suggest that

women at the higher end of the earnings distribution in the Jobs First group were either

unable or unwilling to increase their earnings. Instead, we find that negative effects

become more pronounced over time when we account for rank changes, indicating that

the initially observed negative effects of Jobs First on the earnings distribution were

more persistent than previously recognized.

We observe positive effects of Jobs First on transfers for a substantial fraction of the

distribution (Figure 4c), reflecting that the Jobs First program’s earnings disregard up

to the poverty line was more generous than that of AFDC. Bitler et al. (2006) report

zero effects for the bottom 20 quantiles of the transfer distribution (Figure A1c) because

women with no earnings under AFDC and those with earnings below the poverty line

under Jobs First receive maximum benefit payments. However, when accounting for

rank changes, we observe small positive effects at the lower end of the distribution,

ranging from $119 at quantile 1 to $338 at quantile 18. Moreover, we find substantial

positive effects (exceeding $350) for all quantiles ranging from 19 to 50, while observing

small or statistically insignificant effects towards the higher end of the distribution.

Overall, these findings are similar to those of Bitler et al. (2006) and align with the

predictions of static labor supply theory.

In the post-time limit period, Bitler et al. (2006) find that the effects of Jobs First on

transfers are precisely zero for the first 47 quantiles, and negative for quantiles 48 to 96

(Figure A1d). They highlight that reductions in the rate of cash assistance are the main

contributing factor to the negative effects on transfers. Interestingly, they also report

a positive cash assistance gap conditional on eligibility, which can be attributed to the

generous earnings disregard provided by Jobs First. When considering rank changes,

we uncover small positive effects of Jobs First on transfers. These effects gradually

increase from $13 at quantile 1 to $200 at quantile 48, and then decrease to $4 at

quantile 54 (Figure 4d). From quantile 55 to 98, we observe negative effects, with a

minimum of −$452 at quantile 72. Overall, our findings regarding transfers during the

post-time limit period are similar to those of Bitler et al. (2006), indicating that rank
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changes had a limited impact on the observed effects.

<Figure 4 about here.>

Bitler et al. (2006) report that Jobs First had no impact on the first 10 quantiles

of the income distribution. From quantile 11 to quantile 37, the effects were modest

or not statistically significant. However, they observed substantial increases in incomes

in the middle and at the top of the distribution, reaching up to $800 at quantile 82

(Figure A1e). Our findings are largely consistent with these results, indicating that

the contribution of rank changes to the observed effects was moderate (Figure 4e).

Specifically, our analysis reveals positive (although not always statistically significant)

effects at the bottom of the distribution. The effects range from $66 at quantile 1

to $379 at quantile 10, gradually declining to $117 at quantile 24. For the remainder of

the distribution, we observe positive effects ranging from $147 at quantile 25 to $513

at quantile 89.

Bitler et al. (2006) find that the effects of Jobs First on income during the post-time

limit period exhibit a distinct pattern. Specifically, they report that the effects are

zero for the first 18 quantiles, negative for the subsequent 22 quantiles, and then turn

positive from quantile 46 to quantile 89, before eventually returning to zero or becoming

negative (Figure A1f). Bitler et al. (2006) predict that while some women in the Jobs

First group may experience an increase in earnings that exceeds the loss in transfers due

to the implementation of time limits, this is not the case for others. They also predict

that income increases will occur at higher income levels than income decreases if offered

wages remain constant. Our estimates validate the first prediction but do not support

the second (Figure 4f). When considering rank changes, our analysis reveals substantial

positive effects that gradually increase from $150 at quantile 1 to $863 at quantile 18,

and then gradually decrease to $60 at quantile 31. Between quantile 32 and quantile 67,

we observe small negative effects of approximately −$100 or less (in absolute terms),

followed by a decline from −$113 at quantile 68 to −$950 at quantile 98. These findings

suggest that women with lower incomes are most responsive to reductions in transfers

following the implementation of time limits. Moreover, the negative income effects

observed at the higher end of the distribution align with the corresponding negative

effects of Jobs First on earnings.
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In sum, the discrepancies between our findings and those presented in Bitler et al.

(2006) can be attributed entirely to the explicit inclusion of rank changes in our analysis.

While static labor supply theory would not have predicted certain effects stemming from

rank changes, our results align well with theoretical predictions, particularly during the

pre-time limit period. Deviations from static labor supply theory during the post-time

limit period can be attributed to persistent effects observed during the pre-time limit

period and increased mobility over time.

6.5 Additional parameters of interest

The treatment effect distributions presented in Figures 3 and 4 permit inferences about

the proportion of women who experience improvements, setbacks, or remain unaffected

by the Jobs First program. Table 3 presents the proportion of positive and negative

treatment effects on earnings, transfers, and income during the pre- and post-time limit

periods, as derived from QTE estimates and GQTE estimates. The table includes the

overall proportion of treatment effects, regardless of their significance levels, as well

as the proportions of treatment effects that are statistically significant at the 5%, 1%

and 0.1% level, respectively.25

When examining earnings during the pre-time limit period, our findings reveal sub-

stantial disparities in the proportions of positive and negative effects derived from QTE

and GQTE estimates. Based on QTE estimates, 34.3% of the effects of Jobs First on

earnings are positive, while 12.1% are negative. In contrast, the proportion of positive

effects based on GQTE estimates is 68.7%, whereas the proportion of negative effects

is 31.3%. A considerable gap in the proportion of positive effects remains when we

focus on effects that are statistically significant at the 0.1% level (18.2% based on QTE

versus 58.6% based on GQTE). However, the gap in the proportion of negative effects

disappears when we consider a 0.1% significance level. A similar pattern can be ob-

served for the post-time limit period. These findings highlight substantial disparities

between QTE and GQTE estimates in determining the proportions of ‘winners’ and

‘losers’ of the Jobs First program.
25We present alternative significance levels to address the issue of inflated type I error rates associated

with conducting the same hypothesis test at each percentile of the distribution. We defer the application
of alternative tests, such as the bootstrap test of distributional treatment effects proposed in Abadie
(2002), to future work.
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<Table 3 about here.>

According to QTE estimates, the overall proportion of positive effects on transfers

during the pre-time limit period is 77.8%, while GQTE estimates indicate a higher

proportion of 97.0%. At a 0.1% significance level, the proportions of positive effects

are 55.6% based on QTE estimates and 78.8% based on GQTE estimates. Both QTE

and GQTE reveal no significantly negative effects of Jobs First on transfers before the

implementation of time limits. During the post-time limit period, we observe notable

differences in the proportions of positive effects. While QTE estimates indicate no

significantly positive effects, GQTE estimates show that 49.5% of effects are positive

at a 5% significance level, and 10.1% are positive at a 0.1% significance level. In

contrast, the proportions of negative effects do not differ much between QTE and

GQTE estimates. Overall, we find considerable disparities in the proportion of positive

effects obtained from QTE and GQTE estimates. Nonetheless, in addition to assessing

the proportions of treatment effects, it is equally important to examine their magnitude.

We will discuss this issue below.

Our analysis uncovers notable discrepancies in the proportion of positive treatment

effects on income between QTE and GQTE estimates during the pre-time limit period.

Specifically, the overall proportion of positive effects based on QTE estimates is con-

siderably lower at 85.9% compared to the corresponding proportion of 99.0% based on

GQTE estimates. When focusing on effects that reach statistical significance at a 0.1%

level, the proportion of positive effects based on QTE estimates decreases to 52.5%,

while the proportion based on GQTE estimates remains higher at 71.7%. We observe

no significantly negative effects on income, regardless of whether we consider QTE or

GQTE estimates.

Interestingly, QTE and GQTE estimates yield similar proportions of statistically

significant effects on income during the post-time limit period. Specifically, we find

that the proportion of positive effects at a 5% significance level is 23.2% based on QTE

estimates and 24.2% based on GQTE estimates. When considering a 0.1% significance

level, these proportions decrease to 6.1% based on QTE estimates and 15.2% based

on GQTE estimates. Moreover, we observe that the proportion of negative effects at

a 5% significance level is 7.1% based on QTE estimates and 6.1% based on GQTE

estimates. We do not find any negative effects on income when applying a 0.1% signifi-
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cance level. Despite the observed similarities in the proportions of positive and negative

treatment effects on income, the locations of these effects differ substantially between

QTE estimates (Figure A1f) and GQTE estimates (Figure 4f).

Table 4 provides an overview of the total gains and losses, and presents the stan-

dard deviation of treatment effects for earnings, transfers, and income during the pre-

and post-time limit periods. In the following, we focus on the most pronounced dis-

parities observed between QTE estimates and GQTE estimates, which occur for earn-

ings and income, particularly in the post-time limit period. Specifically, when con-

sidering the overall gains in earnings during quarters 8-16, QTE estimates yield total

gains of approximately $382,000, while GQTE estimates reveal higher gains of approxi-

mately $649,000. When applying a 0.1% significance level, these gains decrease slightly

to approximately $301,000 based on QTE estimates and to approximately $616,000

based on GQTE estimates. These findings indicate that the total gains resulting from

the Jobs First program were more than twice as large as previously recognized. Fig-

ure 4b reveals that a considerable fraction of these gains occurred at the lower end of

the earnings distribution, contrasting with the results presented in Figure A1b, which

suggests a concentration of gains in the middle of the distribution.

<Table 4 about here.>

In addition to higher total gains, we also observe higher total losses in earnings

when accounting for rank changes. However, total losses decrease substantially when

we apply a stringent significance level of 0.1%. In this case, we observe total losses

of approximately $31,000 based on GQTE estimates, and no losses based on QTE

estimates. Figure 4b illustrates that the observed losses occur at the higher end of the

earnings distribution. Accounting for rank changes more than doubles the standard

deviation of treatment effects on earnings in quarters 8-16, from 272.6 based on QTE

estimates to 578.2 based on GQTE estimates.

Turning to income during the post-time limit period, we observe total gains in

income of approximately $190,000 based on QTE estimates when statistical significance

is ignored. Based on GQTE estimates, total gains in income are more than twice as

large, reaching around $383,000. When considering a 0.1% significance level, total

gains in income decrease to approximately $43,000 based on QTE estimates. The
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corresponding figure based on GQTE estimates is more than six times higher, totaling

approximately $260,000. We also observe total losses in income during the post-time

limit period, which amount to approximately $51,000 based on QTE estimates when

a 5% significance level is applied. The corresponding figure based on GQTE estimates

is approximately $107,000. However, total losses disappear when a 0.1% significance

level is applied.

Taken together, our findings suggest that the total gains and losses observed during

the post-time limit period are primarily driven by the impact of Jobs First on the

earnings distribution. Gains in earnings were successful in mitigating the majority

of losses in transfers stemming from the implementation of time limits, which led to

the exclusion of Jobs First women from welfare benefits. While the QTE estimates

(Figure A1f) indicate that losses occur below the median of the income distribution

and gains occur above it, our GQTE estimates (Figure 4f) reveal that gains occur at

the lower end of the distribution, while losses, to the extent that they are statistically

significant, occur at the higher end.

7 Conclusions

This paper introduces an approach to identify quantiles of the distribution of treatment

effects (QDTE) and examines the distributional impacts of Connecticut’s Jobs First

welfare experiment on women’s earnings, transfers, and income. Our focus on situations

in which relevant outcome predictors are available enables us to identify our parameters

of interest under modest assumptions. We leverage a property we term the ‘Rank

Correlation Property’ (RCP), which establishes that, under random assignment, rank

correlation coefficients between actual treatment outcomes and predicted control state

outcomes are identical, regardless of whether predictions are based on treatment or

control units. We show that the rank correlation coefficient between potential outcomes

is identified under the assumption of equally likely permutations of observation units

satisfying the RCP. We use the same assumption to identify QDTE as quantiles of

average unit-level treatment effects. Rearranging quantiles yields generalized quantile

treatment effects (GQTE), which do not rely on a rank invariance assumption but align

with conventional QTE under rank invariance. We employ reweighting methods to
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identify our parameters of interest under strong ignorability. Monte Carlo simulations

validate the unbiasedness, consistency, and asymptotic normality of our estimators when

relevant outcome predictors are available.

We find substantial heterogeneity in the effects of Jobs First on earnings, transfers,

and income. We estimate the effects separately for the periods before and after the

implementation of time limits. During the pre-time limit period, our GQTE estimates

align qualitatively with conventional QTE estimates. In contrast, accounting for rank

changes during the post-time limit period reveals both positive effects at the lower end

and negative effects at the higher end of the earnings distribution, indicating that the

initially observed negative effects on earnings were more persistent than previously rec-

ognized. Our findings also suggest that women with lower incomes are most responsive

to reductions in transfers following the implementation of time limits. Negative in-

come effects at the higher end of the distribution are consistent with the corresponding

negative earnings effects.

We use QTE and GQTE estimates to determine the proportions of positive and

negative treatment effects. During the pre-time limit period, GQTE estimates show a

higher proportion of positive income effects compared to QTE estimates. During the

post-time limit period, QTE and GQTE estimates exhibit similar proportions of in-

come effects, although the locations of these effects differ substantially between the two

methods. Total gains and losses resulting from Jobs First are mainly driven by changes

in the earnings distribution, with GQTE-based estimates showing considerably higher

gains compared to QTE-based estimates. These findings highlight the importance of

accounting for rank changes when estimating distributional effects.
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Tables and Figures

Table 1: Estimation of τsp for alternative values of τ(Y0, Ŷ0) and τ(Y1, Ŷ1)

τsp

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Target 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

τ(Y0, Ŷ0)

0.9 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

0.8 0.91 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
(0.00) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01)

0.7 0.92 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
(0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

0.6 0.89 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

0.5 0.88 0.79 0.70 0.60 0.50 0.40 0.30 0.20 0.10
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

0.4 0.87 0.78 0.70 0.61 0.50 0.40 0.30 0.21 0.11
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

0.3 0.85 0.77 0.69 0.62 0.51 0.41 0.31 0.21 0.11
(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

0.2 0.83 0.75 0.69 0.63 0.52 0.42 0.32 0.22 0.12
(0.01) (0.02) (0.01) (0.03) (0.03) (0.02) (0.03) (0.02) (0.02)

0.1 0.76 0.71 0.69 0.66 0.57 0.47 0.37 0.26 0.17
(0.06) (0.02) (0.01) (0.03) (0.05) (0.04) (0.05) (0.05) (0.05)

Note: This table presents estimated values of τsp using simulation data for alternative
values of τ(Y0, Ŷ0) and τ(Y1, Ŷ1). Each estimate is based on 100 random permutations
of 2 × 16,772 observation units. Bootstrap standard errors (100 replications), which are
presented in parentheses, were estimated by drawing a random sample with replacement
stratified by group membership for each permutation.
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Table 2: Pre-Treatment Characteristics

Means

AFDC p-values

Jobs First U R pU pR pUR

White 0.362 0.348 0.348 0.307 0.305 0.996
Black 0.368 0.371 0.370 0.836 0.857 0.978
Hispanic 0.207 0.216 0.217 0.423 0.416 0.989
Never married 0.654 0.661 0.660 0.624 0.663 0.957
Div/wid/sep/living apart 0.332 0.327 0.328 0.715 0.753 0.960
HS dropout 0.350 0.334 0.335 0.242 0.279 0.933
HS diploma/GED 0.583 0.604 0.603 0.155 0.168 0.967
More than HS diploma 0.066 0.062 0.061 0.557 0.504 0.935
More than two children 0.235 0.214 0.213 0.089 0.079 0.953
Mother younger than 25 0.289 0.297 0.297 0.573 0.547 0.968
Mother age 25-34 0.410 0.418 0.417 0.609 0.639 0.967
Mother older than 34 0.301 0.286 0.286 0.264 0.267 0.996
Recipient (stock) sample 0.624 0.593 0.592 0.029 0.024 0.942
Average quarterly values

Earnings 678.91 785.90 785.97 0.009 0.010 0.999
AFDC payments 890.82 835.11 832.47 0.015 0.011 0.907
Food stamps 352.12 339.35 338.45 0.156 0.129 0.918

Fraction of quarters with
Any earnings 0.322 0.351 0.351 0.006 0.006 0.977
Any AFDC payments 0.573 0.544 0.543 0.026 0.021 0.934
Any food stamps 0.607 0.598 0.597 0.485 0.443 0.943

N 2,396 2,407 2,396

Note: AFDC-U : unrestricted AFDC sample; AFDC-R: restricted AFDC sample. p-values refer
to the comparison of means between groups. pU : Jobs First sample vs. AFDC-U sample. pR:
Jobs First sample vs. AFDC-R sample. pUR: AFDC-U sample vs. AFDC-R sample. Several
variables have missing values for a small number of observations (marital status: 220 observations,
educational attainment: 288 observations, number of children: 161 observations).
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Figure 1: Rank Correlation Distributions and Quantiles of the Impact
Distribution (QID)
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(d) Quantiles of the impact distribution (tau=0.62)
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(f) Quantiles of the impact distribution (tau=0.70)
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(g) Quantiles of the impact distribution (tau=0.74)
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(h) Quantiles of the impact distribution (tau=0.61)

Note: Unweighted results; restricted analysis sample. Figures 1a and 1b: rank cor-
relation distributions based on 100 permutations of treatment outcomes that satisfy
the RCP. Kernel density estimates were plotted over a range that exceeds the mini-
mum and maximum values observed by ±0.0075. Figures 1c-1h: Confidence intervals
are based on clustered bootstrap standard errors (100 replications) to account for re-
peated observations. Top and bottom percentiles not included due to high sampling
variability.
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Figure 2: Relation between QID, QDTE and GQTE,
Income, Quarters 1-7
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Note: Unweighted results; restricted analysis sample. Figures 2a-2c: QID for selected
random permutations of treatment outcomes. Figures 2d-2e: Average unit-level treat-
ment effects based on 100 random permutations of treatment outcomes. Figure 2f:
Results based on rank invariance assumption. Figures 2a-2c and 2e-2f: Top percentile
not included due to high sampling variability.
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Figure 3: Quantiles of the Distribution of Treatment Effects (QDTE)
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Note: Weighted results; unrestricted analysis sample. Confidence intervals based on
clustered bootstrap standard errors (100 replications) to account for repeated obser-
vations. Top and bottom percentiles not included due to high sampling variability.
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Figure 4: Generalized Quantile Treatment Effects (GQTE)

-2
00

0
-1

00
0

0
10

00
20

00

.1 .2 .3 .4 .5 .6 .7 .8 .9
quantile

ATE 95% CI GQTE 95% CI

Earnings, quarters 1-7
(a) Generalized quantile treatment effects (tau=0.71)

-2
00

0
-1

00
0

0
10

00
20

00

.1 .2 .3 .4 .5 .6 .7 .8 .9
quantile

ATE 95% CI GQTE 95% CI

Earnings, quarters 8-16
(b) Generalized quantile treatment effects (tau=0.62)
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(f) Generalized quantile treatment effects (tau=0.61)

Weighted results; unrestricted analysis sample. Confidence intervals based on clus-
tered bootstrap standard errors (100 replications) to account for repeated observa-
tions. Top percentile not included due to high sampling variability.
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Table 3: Winners and Losers: Proportion of Positive and Negative Treatment Effects

Earnings Transfers Income

Q1-7 Q8-16 Q1-7 Q8-16 Q1-7 Q8-16

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
QTE GQTE QTE GQTE QTE GQTE QTE GQTE QTE GQTE QTE GQTE

τ̂ 1 0.71 1 0.62 1 0.78 1 0.69 1 0.74 1 0.61

% > 0
Total 34.3 68.7 36.4 59.6 77.8 97.0 1.0 54.5 85.9 99.0 43.4 31.3
p < 0.05 31.3 61.6 27.3 56.6 64.6 83.8 0.0 49.5 66.7 81.8 23.2 24.2
p < 0.01 22.2 60.6 22.2 55.6 60.6 82.8 0.0 46.5 59.6 75.8 16.2 21.2
p < 0.001 18.2 58.6 20.2 53.5 55.6 78.8 0.0 10.1 52.5 71.7 6.1 15.2

% < 0
Total 12.1 31.3 15.2 40.4 0.0 3.0 47.5 45.5 0.0 1.0 26.3 68.7
p < 0.05 1.0 9.1 0.0 22.2 0.0 0.0 33.3 37.4 0.0 0.0 7.1 6.1
p < 0.01 0.0 4.0 0.0 7.1 0.0 0.0 26.3 26.3 0.0 0.0 2.0 0.0
p < 0.001 0.0 0.0 0.0 3.0 0.0 0.0 17.2 15.2 0.0 0.0 0.0 0.0

Note: Weighted results; unrestricted analysis sample. τ̂ represents the assumed or estimated rank correlation coefficient between
potential treatment and control outcomes. Proportion of positive and negative treatment effects: ‘Total’ refers to the overall
proportion of treatment effects, irrespective of their significance levels. Proportions of treatment effects denoted by p < 0.05,
p < 0.01 and p < 0.001 are statistically significant at the 5%, 1% and 0.1% levels, respectively. Bootstrap standard errors (100
replications) were clustered to account for repeated observations.
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Table 4: Total Gains and Losses, and Standard Deviation of Treatment Effects

Earnings Transfers Income

Q1-7 Q8-16 Q1-7 Q8-16 Q1-7 Q8-16

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
QTE GQTE QTE GQTE QTE GQTE QTE GQTE QTE GQTE QTE GQTE

τ̂ 1 0.71 1 0.62 1 0.78 1 0.69 1 0.74 1 0.61

Gains (USD ’000s)
Total 276 259 382 649 517 604 2 102 742 704 190 383
p < 0.05 269 254 354 640 493 589 0 96 704 621 137 352
p < 0.01 203 251 317 634 480 586 0 92 668 580 105 328
p < 0.001 184 241 301 616 464 575 0 37 633 560 43 260

Losses (USD ’000s)
Total 53 179 43 516 0 1 246 287 0 24 108 439
p < 0.05 7 80 0 344 0 0 215 258 0 0 51 107
p < 0.01 0 37 0 70 0 0 187 199 0 0 14 0
p < 0.001 0 0 0 31 0 0 146 131 0 0 0 0

σ 201.7 244.3 272.6 578.2 212.9 146.9 147.4 188.9 272.6 171.0 166.1 498.2

Note: Weighted results; unrestricted analysis sample. τ̂ represents the assumed or estimated rank correlation coefficient between potential
treatment and control outcomes. Gains and losses: ‘Total’ refers to cumulative gains and losses, irrespective of their significance levels. Gains
and losses denoted by p < 0.05, p < 0.01 and p < 0.001 are statistically significant at the 5%, 1% and 0.1% levels, respectively. σ denotes the
standard deviation of (generalized) quantile treatment effects. Bootstrap standard errors (100 replications) were clustered to account for
repeated observations.

44



References
Abadie, A. (2002): “Bootstrap Tests of Distributional Treatment Effects in Instrumen-

tal Variable Models,” Journal of the American Statistical Association, 97, 284–292.

Abbring, J. and J. J. Heckman (2007): “Econometric Evaluation of Social Pro-
grams, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dy-
namic Discrete Choice, and General Equilibrium Policy Evaluation,” in Handbook of
Econometrics, ed. by J. J. Heckman and E. E. Leamer, Elsevier, Amsterdam, vol. 6B,
chap. 72, 5145–5303.

Ashenfelter, O. (1983): “Determining Participation in Income-Tested Social Pro-
grams,” Journal of the American Statistical Association, 78, 517–525.

Athey, S. and G. Imbens (2016): “Recursive Partitioning for Heterogeneous Causal
Effects,” Proceedings of the National Academy of Sciences (PNAS), 113, 7353–7360.

Bitler, M., J. Gelbach, and H. Hoynes (2005): “Distributional impacts of the
self-sufficiency project,” Working Paper 11626, NBER, Cambridge, MA.

Bitler, M. P., J. B. Gelbach, and H. W. Hoynes (2006): “What Mean Impacts
Miss: Distributional Effects of Welfare Reform Experiments,” American Economic
Review, 96, 988–1012.

——— (2017): “Can Variation in Subgroups’ Average Treatment Effects Explain Treat-
ment Effect Heterogeneity? Evidence from a Social Experiment,” Review of Eco-
nomics and Statistics, 99, 683–697.

Chernozhukov, V., M. Demirer, E. Duflo, and I. Fernández-Val (2018):
“Generic Machine Learning Inference on Heterogenous Treatment Effects in Random-
ized Experiments,” NBERWorking Paper Series 24678, National Bureau of Economic
Research (NBER), Cambridge, MA.

Chernozhukov, V. and C. Hansen (2005): “An IV Model of Quantile Treatment
Effects,” Econometrica, 73, 245–261.

Crump, R. K., V. J. Hotz, G. W. Imbens, and O. A. Mitnik (2008): “Nonpara-
metric Tests for Treatment Effect Heterogeneity,” Review of Economics and Statistics,
90, 389–405.

Doksum, K. (1974): “Empirical Probability Plots and Statistical Inference for Non-
linear Models,” The Annals of Statistics, 2, 267–277.

Fan, Y. and S. Park (2010): “Sharp Bounds on the Distribution of Treatment Effects
and their Statistical Inference,” Econometric Theory, 26, 931–951.

Fan, Y. and S. S. Park (2009): “Partial Identification of the Distribution of Treat-
ment Effects and its Confidence Sets,” Advances inEconometrics, 25, 3–70.

Fan, Y. and J. Wu (2010): “Partial Identification of the Distribution of Treatment Ef-
fects in Switching Regime Models and Its Confidence Sets,” The Review of Economic
Studies, 77, 1002–1041.

45



Firpo, S. (2007): “Efficient Semiparametric Estimation of Quantile Treatment Effects,”
Econometrica, 75, 259–276.

Firpo, S. and G. Ridder (2019): “Partial Identification of the Treatment Effect
Distribution and its Functionals,” Journal of Econometrics, 213, 210–234.

Frandsen, B. R. and L. J. Lefgren (2021): “Partial Identification of the Distribu-
tion of Treatment Effects with an Application to the Knowledge is Power Program
(KIPP),” Quantitative Economics, 12.

Frank, M. J., R. B. Nelsen, and B. Schweizer (1987): “Best-possible Bounds
for the Distribution of a Sum - A Problem of Kolmogorov,” Probability Theory and
Related Fields, 74, 199–211.

Frölich, M. and B. Melly (2013): “Unconditional Quantile Treatment Effects Un-
der Endogeneity,” Journal of Business and Economic Statistics, 31, 346–357.

Gibbons, J. D. and S. Chakraborti (2011): Nonparametric Statistical Inference,
Boca Raton, FL: Chapman and Hall/CRC, 5th ed.

Gillitzer, C. and M. Sinning (2020): “Nudging Businesses to Pay their Taxes: Does
Timing Matter?” Journal of Economic Behavior and Organization, 169, 284–300.

Hahn, P. R., J. S. Murray, and C. Carvalho (2020): “Bayesian Regression Tree
Models for Causal Inference: Regularization, Confounding, and Heterogeneous Ef-
fects,” Bayesian Analysis, 15, 965–1056.

Heckman, J. J., H. Ichimura, and P. Todd (1998): “Matching as an Econometric
Evaluation Estimator,” Review of Economic Studies, 65, 261–294.

Heckman, J. J. and R. Robb (1985): “Alternative Methods for Evaluating the
Impact of Interventions,” in Longitudinal Analysis of Labor Market Data, ed. by J.
J. Heckman and B. Singer, Cambridge University Press, vol. 10, 156–245.

Heckman, J. J., J. Smith, and N. Clements (1997): “Making the Most Out of
Programme Evaluations and Social Experiments: Accounting for Heterogeneity in
Programme Impacts,” Review of Economic Studies, 64, 487–535.

Heckman, J. J. and E. J. Vytlacil (2007): “Econometric Evaluation of Social
Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative
Economic Estimators to Evaluate Social Programs and to Forecast Their Effects in
New Environments,” in Handbook of Econometrics, ed. by J. J. Heckman and E. E.
Leamer, Elsevier, Amsterdam, vol. 6B, chap. 71, 4875–5143.

Hill, J. (2011): “Bayesian Nonparametric Modeling for Causal Inference,” Journal of
Computational and Graphical Statistics, 20, 217–240.

Imai, K. and M. Ratkovic (2013): “Estimating Treatment Effect Heterogeneity in
Randomized Program Evaluation,” The Annals of Applied Statistics, 7, 443–470.

Imbens, G. W. and D. B. Rubin (2015): Causal Inference for Statistics, Social, and
Biomedical Sciences, Cambridge Books, Cambridge University Press.

46



Kendall, M. G. (1938): “A New Measure of Rank Correlation,” Biometrika, 30,
81–93.

Kendall, M. G. and J. D. Gibbons (1990): Rank Correlation Methods, New York:
Oxford University Press, 5th ed.

Kim, J. H. (2018): “Identifying the Distribution of Treatment Effects under Support
Restrictions,” arXiv, e-print 1410.5885.

Kline, P. and M. Tartari (2016): “Bounding the Labor Supply Response to a
Randomized Welfare Experiment: A Revealed Preference Approach,” American Eco-
nomic Review, 106, 972–1014.

Künzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu (2019): “Metalearners for
Estimating Heterogeneous Treatment Effects using Machine Learning,” Proceedings
of the National Academy of Sciences (PNAS), 116, 4156–4165.

Lechner, M. (1999): “Earnings and Employment Effects of Continuous Off-the-Job
Training in East Germany after Unification,” Journal of Business and Economic
Statistics, 17, 74–90.

Lee, M. J. (2006): Micro-Econometrics for Policy, Program and Treatment Effects,
Oxford University Press.

Lee, S. (2022): “Partial Identification and Inference for Conditional Distributions of
Treatment Effects,” arXiv, e-print 2108.00723.

Lee, S. and A. M. Shaikh (2013): “Multiple Testing and Heterogeneous Treatment
Effects: Re-evaluating the Effects of Progresa on School Enrollment,” Journal of
Applied Econometrics, 29, 612–626.

Lehmann, E. (1974): Nonparametrics: Statistical Methods Based on Ranks, San Fran-
cisco: Holden-Day.

List, J. A., A. M. Shaikh, and Y. Xu (2019): “Multiple Hypothesis Testing in
Experimental Economics,” Experimental Economics, 22, 773–793.

Makarov, G. D. (1982): “Estimates for the Distribution Function of a Sum of Two
Random Variables When the Marginal Distributions are Fixed,” Theory of Probability
and its Applications, 26, 803–806.

Manski, C. (1997): “The Mixing Problem in Programme Evaluation,” Review of Eco-
nomic Studies, 64, 537–553.

Nie, X. and S. Wager (2021): “Quasi-Oracle Estimation of Heterogeneous Treatment
Effects,” Biometrika, 108, 299–319.

Parzen, E. (1979): “Nonparametric Statistical Data Modeling,” Journal of the Amer-
ican Statistical Association, 74, 105–121.

Powers, S., J. Qian, K. Jung, A. S. N. H. Shah, T. Hastie, and R. Tibshi-
rani (2018): “Some Methods for Heterogeneous Treatment Effect Estimation in High
Dimensions,” Statistics in Medicine, 37, 1767–1787.

47



Rosenbaum, P. and D. B. Rubin (1983): “The Central Role of the Propensity Score
in Observational Studies for Causal Effects,” Biometrika, 70, 41–55.

Rubin, D. (1990): “Formal Modes of Statistical Inference for Causal Effects,” Journal
of Statistical Planning and Inference, 25, 279–292.

Rubin, D. B. (1974): “Estimating Causal Effects of Treatments in Randomized and
Non-Randomized Studies,” Journal of Educational Psychology, 66, 688–701.

Rüschendorf, L. (1982): “Random Variables with Maximum Sums,” Advances in
Applied Probability, 14, 623–632.

Russel, T. M. (2021): “Sharp Bounds on Functionals of the Joint Distribution in
the Analysis of Treatment Effects,” Journal of Business and Economic Statistics, 39,
532–546.

Shalit, U., F. D. Johansson, and D. Sontag (2017): “Estimating Individual
Treatment Effect: Generalization Bounds and Algorithms,” Proceedings of Machine
Learning Research, 3076–3085.

Su, X., C.-L. Tsai, H. Wang, D. M. Nickerson, and B. Li (2009): “Subgroup
Analysis via Recursive Partitioning,” Journal of Machine Learning Research, 10, 141–
158.

Wager, S. and S. Athey (2018): “Estimation and Inference of Heterogeneous Treat-
ment Effects using Random Forests,” Journal of the American Statistical Association,
113, 1228–1242.

Williamson, R. C. and T. Downs (1990): “Probabilistic Arithmetic I. Numeri-
cal Methods for Calculating Convolutions and Dependency Bounds,” International
Journal of Approximate Reasoning, 4, 89–158.

48



Appendix A – Additional results

1. QTE results under rank invariance

Figure A1 displays the replication results of conventional QTE estimates originally

presented in Bitler et al. (2006), using the approach of Firpo (2007). In contrast to

Bitler et al. (2006), who report 90 percent confidence intervals, we present 95 percent

confidence intervals throughout the paper. While we were unable to replicate the exact

confidence intervals of Bitler et al. (2006) due to their reliance on bootstrap standard

errors, we adopt their approach of estimating clustered bootstrap standard errors to

account for the presence of repeated observations.

2. Intuition behind the identification of τsp

To provide context for the identification of τsp, it is useful to examine the values

of τ(Y0, Ŷ0) and τ(Y1, Ŷ1) we would expect to observe if τsp was known. Table A1

presents simulated values of τ(Y1, Ŷ1) corresponding to various values of τ(Y0, Ŷ0)

and τsp based on averaging over 100 random permutations of 2 × 16,772 observation

units (N1 = N0 = N/2 =16,772), which matches our restricted analysis sample. For

simplicity, we assume no ties and consider a model with a single continuous covariate

vector X1 of length N × 1. We choose 100 random permutations of X1 for different

values of τ(Y0, Ŷ0) = τ(Y0,X1). We also choose 100 random permutations of Y1 for

various values of τsp. We can use the permutations of Y1 to obtain simulated values

of τ(Y1, Ŷ1) = τ(Y1,X1) because the ranks of X1 in the treatment group sample are

the same as those in the control group sample.

We initially consider the case in which the rank invariance assumption holds, τsp = 1.

In this case, we expect to observe an identical rank correlation coefficient between

actual and predicted outcomes in both groups, τ(Y1, Ŷ1) = τ(Y0, Ŷ0), irrespective of

how well we predict the ranks of the control outcomes. The values in Column (1) of

Table A1 confirm this expectation: τ(Y1, Ŷ1) equals τ(Y0, Ŷ0) if τsp = 1. Similarly,

for cases in which the set of covariates predicts the ranks of the control outcomes

perfectly, τ(Y0, Ŷ0) = 1, any deviation of τ(Y1, Ŷ1) from 1 is expected to emanate

from an imperfect rank correlation between potential treatment and control outcomes.
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The first row of Table A1 validates this point by showing that τ(Y1, Ŷ1) equals τsp if

τ(Y0, Ŷ0) = 1.

We observe that for the remaining cases in which 0 ≤ τsp < 1 and 0 ≤ τ(Y0, Ŷ0) < 1,

τ(Y1, Ŷ1) deviates from τsp because our predictions of the ranks of control outcomes

are not perfect. At the same time, τ(Y1, Ŷ1) deviates from τ(Y0, Ŷ0) because the

rank invariance assumption does not hold. The simulated values presented in Table A1

form a symmetric matrix because deviations of τsp from 1 have the same impact on

τ(Y1, Ŷ1) as deviations of τ(Y0, Ŷ0) from 1. Table A1 focuses on cases in which τsp

and τ(Y0, Ŷ0) are non-negative. Extending the analysis to cases in which τsp < 0

and τ(Y0, Ŷ0) < 0 produces a mirror image of the positive values presented in Table A1.

Similarly, analyzing cases in which τsp < 0 and τ(Y0, Ŷ0) ≥ 0 or τsp ≥ 0 and τ(Y0, Ŷ0) < 0

produces a negative mirror image of the positive values in Table A1.

3. Testing the predictive strength of covariates

We test the predictive strength of covariates by creating 100 simulated datasets. Each

simulated dataset s, s = {1, . . . ,100}, contains observed outcomes and predicted values,

with permutations of observation units tailored to a specific target value τsp and a spe-

cific rank correlation coefficient τ(Y0, Ŷ0). We compare the target values to estimated

rank correlation coefficients. For simplicity, we use our restricted analysis sample to

create simulated datasets with equal treatment and control group sizes.26 Within each

dataset, we find a random permutation of Y1 that satisfies the RCP. We use the permu-

tations derived from the 100 datasets to estimate τ̂ = (1/100)∑100
s=1 τ(ΠsY1,Y0), where

Πs, s = {1, . . . ,100}, is a (N1 ×N1)-permutation matrix.

To ascertain whether our estimate deviates significantly from the target value, we

conduct a hypothesis test with the null hypothesis H0 ∶ τsp − τ̂ = 0 against the alter-

native hypothesis H1 ∶ τsp − τ̂ ≠ 0. Our test results, which are presented in Panel A

of Table A2, confirm that our predictors generally possess sufficient strength to yield

unbiased estimates of the rank correlation between potential treatment and control out-

comes. However, we do observe a small but statistically significant bias for transfers

during the pre-time limit period.
26It is possible to accommodate different treatment and control group sizes by using an approach

akin to that employed in Section 4.4.2.
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To explore how deviations in estimated rank correlation coefficients from target

values affect our QDTE estimates, we obtain QDTE estimates corresponding to differ-

ent values of τsp. We use a two-sided Kolmogorov-Smirnov test to determine whether

differences between alternative rank correlation coefficients translate into significant dif-

ferences between QDTE functions. The test results, which are presented in Panel B of

Table A2, indicate that the differences between estimated rank correlation coefficients

and target values have no significant impact on our QDTE estimates.

4. Implications of assuming equally likely permutations

The primary identifying assumption in this paper is that all permutations satisfying the

RCP are equally likely. While it is not possible to test this assumption, we can explore

its implications for GQTE estimates, which are derived from averages of permutation-

specific GQTE estimates. In Figure A2, we present permutation-specific GQTEs for in-

come during the pre-time limit period. Figures A2a-A2e illustrate the density functions

of permutation-specific GQTEs at selected quantiles. Our findings indicate that these

density functions converge toward approximately normal distributions as the number

of permutations increases. Moreover, we observe that even a relatively modest number

of permutations (P = 100) yields a reasonably accurate approximation.

Figure A2f depicts the GQTE and the underlying density functions of permutation-

specific GQTEs across percentiles. We observe that 50 percent of the probability mass

of the underlying density functions is concentrated in close proximity to the GQTE.

This observation provides strong evidence in support of calculating averages under the

assumption of equally likely permutations. Our findings also emphasize the limitations

on knowledge generation when deriving bounds from permutations with extremely low

probability of occurrence. Moreover, our results highlight the potential for developing

tests to compare alternative identifying assumptions. For instance, one could compare

GQTE based on equally likely permutations to GQTE based on an alternative weighting

scheme. The exploration of this issue remains a subject for future research.
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5. Impact of sample restriction and reweighting

Figure A3 presents QDTE, GQTE, and QTE estimates for income during the pre-time

limit period, illustrating the consequences of two factors: imposing a sample restriction

on the AFDC sample and employing a reweighting approach to control for covariates.

We find that excluding 11 randomly selected observations from the AFDC sample to

obtain a restricted analysis sample with balanced treatment and control group sizes has

minimal influence on our results. We also observe that, due to random assignment of

observation units to treatment and control groups, the use of a reweighting approach

does not change our results qualitatively.

Figures A3c and A3d depict unweighted and weighted QTE and GQTE estimates

under rank invariance for our unrestricted analysis sample.27 These results confirm

that our approach yields very similar results to the approach of Firpo (2007) under

rank invariance. While the QTE estimates presented in Figure A3d involve calculat-

ing reweighted quantiles of unweighted outcomes, our GQTE estimates are based on

calculating unweighted quantiles of reweighted outcomes. We have no clear preference

for one approach over another if the rank invariance assumption holds. However, in

contrast to the approach of Firpo (2007), our approach remains applicable in situations

where the rank invariance assumption is violated.

27Unweighted QTE and GQTE estimates under rank invariance for our restricted analysis sample
are presented in Figure 2f.
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Figure A1: Quantile Treatment Effects under Rank Invariance
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Note: Weighted results; unrestricted analysis sample. ATE: Confidence intervals are
based on clustered standard errors to account for repeated observations. QTE: Confi-
dence intervals are based on clustered bootstrap standard errors (100 replications) to
account for repeated observations. Top percentile not included due to high sampling
variability.
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Table A1: Simulated values of τ(Y1, Ŷ1) for given values of τ(Y0, Ŷ0) and τsp

τsp

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
τ(Y0, Ŷ0) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

1.0 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
0.9 0.90 0.86 0.78 0.69 0.59 0.49 0.39 0.30 0.20 0.10 0.00
0.8 0.80 0.78 0.72 0.64 0.56 0.47 0.38 0.28 0.19 0.10 0.00
0.7 0.70 0.69 0.64 0.59 0.51 0.43 0.35 0.26 0.18 0.09 0.00
0.6 0.60 0.59 0.56 0.51 0.46 0.39 0.32 0.24 0.16 0.08 0.00
0.5 0.50 0.49 0.47 0.43 0.39 0.33 0.27 0.21 0.14 0.07 0.00
0.4 0.40 0.39 0.38 0.35 0.32 0.27 0.22 0.17 0.12 0.06 0.00
0.3 0.30 0.30 0.28 0.26 0.24 0.21 0.17 0.13 0.09 0.05 0.00
0.2 0.20 0.20 0.19 0.18 0.16 0.14 0.12 0.09 0.06 0.03 0.00
0.1 0.10 0.10 0.09 0.09 0.08 0.07 0.06 0.04 0.03 0.02 -0.00
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00 0.00

Note: This table presents simulated values of τ(Y1, Ŷ1) using simulation data for alternative
values of τ(Y0, Ŷ0) and τsp. Each simulated value is based on 100 random permutations of 2
× 16,772 observation units.
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Table A2: Simulation-based test for strength of model predictors and
Kolmogorov-Smirnov test for equality of distribution functions

Earnings Transfers Income

(1) (2) (3) (4) (5) (6)
Q1-7 Q8-16 Q1-7 Q8-16 Q1-7 Q8-16

Panel A.

τ(Y0, Ŷ0) 0.35 0.31 0.35 0.30 0.32 0.27

τsp Estimate

0.80 0.78
[0.00]

0.76 0.74
[0.06]

0.72 0.71
[0.46]

0.70 0.69
[0.17]

0.61 0.62
[0.29]

0.60 0.61
[0.20]

Panel B.

τ1, τ2 Kolmogorov-Smirnov test (p-values)

0.80, 0.78 0.994
0.76, 0.74 0.696
0.72, 0.71 1.000
0.70, 0.69 1.000
0.61, 0.62 0.577
0.60, 0.61 1.000

Note: Panel A: We generate 100 simulation datasets based on
our restricted analysis sample. Each dataset contains random
permutations of observation units consistent with a specific
target value τsp and a given rank correlation between actual and
predicted control outcomes τ(Y0, Ŷ0). We use these datasets
to estimate τ̂ while varying τsp over the range from 0.6 to 0.8.
Panel A presents the target values and their corresponding
estimates, which conform with the estimates shown in Figures 1a
and 1b. We test whether the target values deviate significantly
from the corresponding estimates. The associated p-values for the
two-sided test comparing target values and estimates are reported
in brackets. Panel B: Two-sided Kolmogorov-Smirnov test. We
compare QDTE estimates under two different assumed values of
the rank correlation coefficient between potential treatment and
control outcomes, τ1 and τ2. Panel B presents the associated
p-values, which were calculated using a counting algorithm as
described in Gibbons and Chakraborti (2011).
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Figure A2: GQTE and permutation-specific GQTEs,
Income, quarters 1-7
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Note: GQTE estimates are derived from averaging permutation-specific GQTE es-
timates. Figures A2a-A2e: density functions of permutation-specific GQTEs at se-
lected quantiles. Figure A2f: GQTE and underlying density functions of permutation-
specific GQTEs across percentiles. Top percentile not included due to high sampling
variability.
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Figure A3: Impact of sample restriction and reweighting,
Income, quarters 1-7
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Note: Figures A3b-A3d: Top percentile not included due to high sampling variability.
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Appendix B – Monte Carlo simulation

We use Monte Carlo simulations to study the finite sample behavior of our estima-

tors. We consider two normally distributed (N × 1)-vectors, Y1 ∼ N(µ1, σ2
1) and

Y0 ∼ N(µ0, σ2
0). Moreover, we consider a single (N × 1)-covariate vector X1, which

contains the ranks of a random variable without ties.

1. Rank correlation coefficients

We use random permutations of Y1 to generate simulation datasets in which the rank

correlation coefficient τsp = τ(Y1,Y0) ranges from 0 to 0.9. We also use random permu-

tations to vary the predictive strength of X1 by adjusting the rank correlation coeffi-

cient τc = τ(Y0,X1) over the range from 0.1 to 0.9. For each combination of τsp and τc,

we create 100 simulation datasets with a sample size of 500 (250 observation units in

each group) and an additional 100 simulation datasets with a sample size of 5,000 (2,500

observation units in each group). Within each simulation dataset, we estimate τsp us-

ing 100 random permutations of Y1 satisfying the RCP. We obtain bootstrap standard

errors for each estimate using 100 replications. We repeat this process 100 times for

each sample and each combination of τsp and τc to obtain our Monte Carlo simulation

results.

Tables B1 and B2 present the results for datasets with 500 and 5,000 observation

units, respectively. The results confirm the precision of our estimator of τsp, even when

the sample size is relatively small. They also confirm that the estimator is unbiased

when τc exceeds a certain threshold. Specifically, for τc ≥ 0.4, our estimator performs

well in terms of bias and root mean square error (RMSE). For τc ≥ 0.3, our estimator

maintains its accuracy as long as τsp remains below or equal to 0.8. We also find that

the biases diminish notably as the sample size increases. Tables B3 and B4 report the

estimated bootstrap standard errors, their lower and upper 5th percentile, and the 90

percent coverage rate. The results confirm that our estimated bootstrap standard errors

are a good representation of the true sampling variation.
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2. QID, QDTE and GQTE

We study the finite sample behavior of QID, QDTE, and GQTE estimators. We de-

rive target values for the case in which Y1 and Y0 are independent to establish their

statistical properties, including unbiasedness, consistency, and asymptotic normality.

We also assess the validity of estimated bootstrap standard errors for the QDTE and

GQTE estimators.

For u ∈ (0,1), the quantile function of the QID estimator under independence is

given by

(µ1 − µ0) +
√
σ2

1 + σ2
0Φ−1(u),

where Φ(⋅) represents the CDF of the standard normal distribution. Following Fan

and Park (2009), we consider a scenario where Y1 ∼ N(2,2) and Y0 ∼ N(1,1). We

estimate the QID at selected quantiles, including Q10, Q25, Q50, Q75, and Q90, and

subsequently compare our estimates to the target values of the quantile function at

these quantiles. The respective target values are −1.22, −0.17, 1.00, 2.17, and 3.22.

The quantile function of the QID estimator is based on arranging treatment effects

in ascending order, capturing the full amount of heterogeneity in the data, without

considering the location of control outcomes. Our objective is to compare each control

outcome to a set of treatment outcomes resulting from permutations that have a positive

probability of occurrence. Under independence, this means we compare each control

outcome to all possible treatment outcomes. Assuming equally likely permutations,

we calculate the average over all permutations to obtain the GQTE. Therefore, the

quantile function of the GQTE estimator under independence is obtained by comparing

the expected value of the treatment outcome, µ1, to the quantile function of Y0. The

quantile function of Y0 is given by µ0 + σ0Φ−1(u). Consequently, the quantile function

of the GQTE estimator under independence is

µ1 − (µ0 + σ0Φ−1(u)).

In the scenario where Y1 ∼ N(2,2) and Y0 ∼ N(1,1), the target values at Q10,

Q25, Q50, Q75, and Q90 are 2.28, 1.67, 1.00, 0.33, and −0.28, respectively. To derive
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the quantile function of the QDTE estimator, the values of the quantile function of the

GQTE estimator have to be rearranged to be monotonically increasing. Therefore, the

corresponding target values of the QDTE are −0.28, 0.33, 1.00, 1.67, and 2.28.

Figures B1 and B2 provide evidence of the unbiasedness, consistency, and asymp-

totic normality of our estimators. We focus on a scenario in which τc = 0.4. Estima-

tion is based on 100 random permutations of observation units. Figure B1 illustrates

the convergence of our estimators towards the relevant target values at sample sizes

of 500, 5,000, and 50,000. Figure B2 illustrates that the distributions of a recentered

and rescaled version of our estimators become increasingly indistinguishable from a nor-

mal distribution as the sample size increases. This finding underscores the asymptotic

normality property of our estimators. Figures B3 and B5 present bootstrap standard

errors for selected quantiles of QDTE and GQTE estimators. These findings confirm

that increased sample size and the availability of highly predictive covariates contribute

to enhanced precision. In Figures B4 and B6, we report the 90 percent coverage rates

of QDTE and GQTE estimators. These results validate the accuracy of our estimated

bootstrap standard errors.
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Table B1: Monte Carlo simulation (500 observations; 100 replications): Point
estimates of τsp resulting from 100 random permutations

τsp 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

τc =.9
Mean 0.899 0.800 0.699 0.599 0.500 0.400 0.301 0.200 0.099 0.010
Standard deviation 0.008 0.008 0.008 0.007 0.007 0.008 0.009 0.008 0.008 0.001
Bias -0.001 0.000 -0.001 -0.001 0.000 0.000 0.001 -0.000 -0.001 0.010
RMSE 0.008 0.008 0.008 0.007 0.007 0.008 0.009 0.008 0.008 0.010

τc =.8
Mean 0.909 0.801 0.699 0.602 0.498 0.402 0.301 0.199 0.101 0.013
Standard deviation 0.016 0.016 0.014 0.014 0.014 0.014 0.016 0.015 0.015 0.006
Bias 0.009 0.001 -0.001 0.002 -0.002 0.002 0.001 -0.001 0.001 0.013
RMSE 0.018 0.016 0.014 0.014 0.014 0.015 0.016 0.015 0.015 0.015

τc =.7
Mean 0.912 0.801 0.699 0.604 0.501 0.403 0.297 0.203 0.101 0.018
Standard deviation 0.020 0.027 0.023 0.022 0.019 0.022 0.021 0.023 0.025 0.011
Bias 0.012 0.001 -0.001 0.004 0.001 0.003 -0.003 0.003 0.001 0.018
RMSE 0.023 0.027 0.023 0.023 0.019 0.022 0.022 0.023 0.025 0.021

τc =.6
Mean 0.892 0.801 0.697 0.604 0.498 0.401 0.297 0.200 0.105 0.021
Standard deviation 0.023 0.036 0.031 0.034 0.031 0.029 0.033 0.030 0.036 0.014
Bias -0.008 0.001 -0.003 0.004 -0.002 0.001 -0.003 -0.000 0.005 0.021
RMSE 0.024 0.036 0.031 0.035 0.031 0.029 0.033 0.030 0.036 0.026

τc =.5
Mean 0.873 0.800 0.699 0.612 0.495 0.405 0.310 0.206 0.109 0.031
Standard deviation 0.023 0.037 0.047 0.045 0.047 0.046 0.045 0.048 0.040 0.025
Bias -0.027 0.000 -0.001 0.012 -0.005 0.005 0.010 0.006 0.009 0.031
RMSE 0.036 0.037 0.047 0.046 0.048 0.047 0.046 0.048 0.041 0.040

τc =.4
Mean 0.843 0.777 0.698 0.627 0.505 0.413 0.306 0.196 0.106 0.035
Standard deviation 0.023 0.044 0.043 0.069 0.065 0.058 0.061 0.062 0.057 0.033
Bias -0.057 -0.023 -0.002 0.027 0.005 0.013 0.006 -0.004 0.006 0.035
RMSE 0.062 0.049 0.043 0.075 0.065 0.060 0.061 0.062 0.058 0.048

τc =.3
Mean 0.813 0.758 0.704 0.616 0.509 0.410 0.320 0.217 0.116 0.058
Standard deviation 0.027 0.046 0.061 0.097 0.082 0.094 0.095 0.086 0.070 0.045
Bias -0.087 -0.042 0.004 0.016 0.009 0.010 0.020 0.017 0.016 0.058
RMSE 0.091 0.062 0.061 0.098 0.083 0.094 0.097 0.088 0.072 0.073

τc =.2
Mean 0.772 0.728 0.671 0.615 0.524 0.438 0.341 0.235 0.155 0.104
Standard deviation 0.024 0.050 0.076 0.092 0.119 0.116 0.129 0.125 0.122 0.094
Bias -0.128 -0.072 -0.029 0.015 0.024 0.038 0.041 0.035 0.055 0.104
RMSE 0.130 0.087 0.081 0.093 0.122 0.122 0.136 0.129 0.134 0.140

τc =.1
Mean 0.725 0.678 0.655 0.589 0.551 0.481 0.371 0.351 0.282 0.173
Standard deviation 0.024 0.056 0.070 0.109 0.130 0.170 0.210 0.197 0.214 0.168
Bias -0.175 -0.122 -0.045 -0.011 0.051 0.081 0.071 0.151 0.182 0.173
RMSE 0.177 0.134 0.083 0.110 0.140 0.189 0.221 0.248 0.281 0.241
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Table B2: Monte Carlo simulation (5,000 observations; 100 replications):
Point estimates of τsp resulting from 100 random permutations

τsp 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

τc =.9
Mean 0.901 0.799 0.699 0.599 0.500 0.401 0.301 0.200 0.100 0.007
Standard deviation 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.001
Bias 0.001 -0.001 -0.001 -0.001 -0.000 0.001 0.001 0.000 -0.000 0.007
RMSE 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.007

τc =.8
Mean 0.907 0.800 0.698 0.599 0.499 0.400 0.301 0.200 0.100 0.009
Standard deviation 0.004 0.006 0.005 0.005 0.004 0.006 0.005 0.005 0.005 0.001
Bias 0.007 0.000 -0.002 -0.001 -0.001 -0.000 0.001 0.000 0.000 0.009
RMSE 0.009 0.006 0.006 0.005 0.005 0.006 0.005 0.005 0.005 0.009

τc =.7
Mean 0.915 0.803 0.698 0.601 0.501 0.399 0.300 0.199 0.100 0.010
Standard deviation 0.009 0.008 0.007 0.008 0.007 0.007 0.008 0.008 0.007 0.002
Bias 0.015 0.003 -0.002 0.001 0.001 -0.001 0.000 -0.001 0.000 0.010
RMSE 0.018 0.009 0.007 0.008 0.007 0.007 0.008 0.008 0.007 0.010

τc =.6
Mean 0.898 0.804 0.698 0.602 0.503 0.400 0.300 0.200 0.103 0.012
Standard deviation 0.006 0.011 0.010 0.010 0.010 0.012 0.010 0.010 0.008 0.004
Bias -0.002 0.004 -0.002 0.002 0.003 0.000 -0.000 -0.000 0.003 0.012
RMSE 0.007 0.012 0.011 0.010 0.011 0.012 0.010 0.010 0.009 0.013

τc =.5
Mean 0.874 0.795 0.696 0.599 0.501 0.400 0.301 0.203 0.102 0.016
Standard deviation 0.010 0.013 0.011 0.013 0.012 0.013 0.014 0.013 0.012 0.008
Bias -0.026 -0.005 -0.004 -0.001 0.001 0.000 0.001 0.003 0.002 0.016
RMSE 0.027 0.013 0.012 0.013 0.012 0.013 0.014 0.013 0.012 0.018

τc =.4
Mean 0.858 0.782 0.697 0.605 0.500 0.401 0.304 0.205 0.108 0.019
Standard deviation 0.013 0.015 0.013 0.018 0.020 0.018 0.018 0.018 0.017 0.011
Bias -0.042 -0.018 -0.003 0.005 0.000 0.001 0.004 0.005 0.008 0.019
RMSE 0.044 0.023 0.014 0.019 0.020 0.018 0.019 0.019 0.019 0.022

τc =.3
Mean 0.834 0.774 0.694 0.616 0.511 0.412 0.311 0.212 0.114 0.026
Standard deviation 0.013 0.019 0.018 0.029 0.024 0.030 0.026 0.025 0.027 0.016
Bias -0.066 -0.026 -0.006 0.016 0.011 0.012 0.011 0.012 0.014 0.026
RMSE 0.067 0.032 0.019 0.033 0.027 0.032 0.029 0.028 0.030 0.030

τc =.2
Mean 0.793 0.747 0.693 0.628 0.533 0.438 0.331 0.226 0.131 0.041
Standard deviation 0.014 0.023 0.020 0.033 0.042 0.042 0.047 0.042 0.039 0.030
Bias -0.107 -0.053 -0.007 0.028 0.033 0.038 0.031 0.026 0.031 0.041
RMSE 0.107 0.058 0.021 0.043 0.053 0.056 0.057 0.049 0.050 0.051

τc =.1
Mean 0.729 0.710 0.693 0.658 0.591 0.509 0.400 0.300 0.210 0.116
Standard deviation 0.011 0.016 0.019 0.036 0.064 0.074 0.084 0.083 0.082 0.070
Bias -0.171 -0.090 -0.007 0.058 0.091 0.109 0.100 0.100 0.110 0.116
RMSE 0.171 0.092 0.020 0.068 0.111 0.132 0.131 0.130 0.137 0.136
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Table B3: Bootstrap standard errors from Monte Carlo simulation
(500 observations; 100 replications)

τsp 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

τc =.9
Mean 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.002
Upper 5th percentile 0.009 0.009 0.009 0.009 0.008 0.009 0.009 0.009 0.009 0.003
Lower 5th percentile 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.002
90% coverage rate (%) 94 88 92 91 95 91 88 85 90 97

τc =.8
Mean 0.016 0.016 0.014 0.015 0.015 0.016 0.015 0.015 0.015 0.006
Upper 5th percentile 0.018 0.018 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.008
Lower 5th percentile 0.014 0.014 0.012 0.013 0.013 0.014 0.014 0.013 0.013 0.005
90% coverage rate (%) 89 88 90 91 94 93 87 90 92 94

τc =.7
Mean 0.020 0.026 0.022 0.023 0.024 0.023 0.022 0.024 0.023 0.010
Upper 5th percentile 0.022 0.029 0.025 0.026 0.026 0.026 0.025 0.026 0.026 0.013
Lower 5th percentile 0.018 0.022 0.020 0.021 0.022 0.021 0.019 0.021 0.021 0.008
90% coverage rate (%) 93 89 89 92 97 91 93 91 87 90

τc =.6
Mean 0.021 0.036 0.032 0.034 0.033 0.032 0.032 0.033 0.031 0.016
Upper 5th percentile 0.023 0.040 0.037 0.038 0.037 0.036 0.036 0.036 0.035 0.019
Lower 5th percentile 0.019 0.032 0.027 0.029 0.028 0.028 0.028 0.029 0.028 0.013
90% coverage rate (%) 86 91 87 90 93 94 89 93 89 95

τc =.5
Mean 0.022 0.042 0.043 0.047 0.044 0.043 0.044 0.044 0.042 0.022
Upper 5th percentile 0.025 0.047 0.048 0.052 0.049 0.049 0.049 0.048 0.047 0.026
Lower 5th percentile 0.020 0.037 0.037 0.041 0.038 0.038 0.039 0.039 0.037 0.018
90% coverage rate (%) 91 96 89 92 88 84 90 86 90 88

τc =.4
Mean 0.024 0.044 0.055 0.062 0.062 0.059 0.060 0.059 0.055 0.034
Upper 5th percentile 0.027 0.049 0.063 0.070 0.069 0.068 0.067 0.066 0.060 0.041
Lower 5th percentile 0.021 0.040 0.048 0.055 0.054 0.051 0.054 0.052 0.049 0.027
90% coverage rate (%) 91 88 96 86 91 90 92 88 90 92

τc =.3
Mean 0.025 0.044 0.063 0.080 0.088 0.087 0.085 0.084 0.074 0.050
Upper 5th percentile 0.028 0.049 0.070 0.090 0.099 0.098 0.095 0.093 0.084 0.059
Lower 5th percentile 0.023 0.039 0.055 0.071 0.080 0.075 0.075 0.075 0.065 0.042
90% coverage rate (%) 85 88 88 84 91 89 88 88 96 94

τc =.2
Mean 0.025 0.045 0.070 0.096 0.117 0.131 0.133 0.128 0.111 0.083
Upper 5th percentile 0.028 0.052 0.077 0.105 0.130 0.143 0.146 0.146 0.129 0.100
Lower 5th percentile 0.022 0.039 0.062 0.085 0.104 0.118 0.119 0.115 0.097 0.070
90% coverage rate (%) 95 87 92 89 89 95 90 94 89 90

τc =.1
Mean 0.026 0.051 0.082 0.117 0.150 0.177 0.192 0.201 0.196 0.182
Upper 5th percentile 0.029 0.059 0.095 0.133 0.166 0.193 0.210 0.216 0.211 0.202
Lower 5th percentile 0.023 0.044 0.069 0.104 0.131 0.160 0.174 0.187 0.180 0.163
90% coverage rate (%) 93 92 95 95 94 96 87 93 90 92
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Table B4: Bootstrap standard errors from Monte Carlo simulation
(5,000 observations; 100 replications)

τsp 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

τc =.9
Mean 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.001
Upper 5th percentile 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.004 0.001
Lower 5th percentile 0.002 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.001
90% coverage rate (%) 88 90 91 90 95 92 92 94 92 94

τc =.8
Mean 0.005 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.001
Upper 5th percentile 0.006 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.006 0.002
Lower 5th percentile 0.004 0.005 0.005 0.005 0.004 0.004 0.005 0.004 0.004 0.001
90% coverage rate (%) 90 92 92 91 96 84 90 91 93 95

τc =.7
Mean 0.009 0.008 0.008 0.008 0.007 0.007 0.008 0.008 0.007 0.002
Upper 5th percentile 0.010 0.009 0.008 0.008 0.008 0.008 0.009 0.008 0.008 0.003
Lower 5th percentile 0.008 0.007 0.007 0.007 0.006 0.007 0.007 0.007 0.006 0.002
90% coverage rate (%) 88 88 93 87 92 91 87 91 88 94

τc =.6
Mean 0.007 0.011 0.010 0.010 0.010 0.011 0.011 0.010 0.010 0.004
Upper 5th percentile 0.008 0.012 0.011 0.011 0.012 0.012 0.012 0.012 0.011 0.005
Lower 5th percentile 0.006 0.010 0.009 0.009 0.009 0.010 0.009 0.009 0.009 0.003
90% coverage rate (%) 91 93 88 90 92 86 89 90 93 94

τc =.5
Mean 0.010 0.012 0.012 0.014 0.014 0.015 0.014 0.014 0.014 0.006
Upper 5th percentile 0.011 0.014 0.014 0.016 0.015 0.016 0.015 0.015 0.015 0.008
Lower 5th percentile 0.009 0.011 0.011 0.012 0.012 0.014 0.012 0.012 0.012 0.005
90% coverage rate (%) 92 91 95 91 93 91 89 90 93 87

τc =.4
Mean 0.012 0.016 0.015 0.020 0.020 0.019 0.018 0.018 0.018 0.010
Upper 5th percentile 0.013 0.018 0.018 0.022 0.022 0.022 0.021 0.020 0.021 0.012
Lower 5th percentile 0.011 0.014 0.013 0.017 0.018 0.017 0.016 0.016 0.016 0.008
90% coverage rate (%) 85 89 91 93 88 90 90 91 95 90

τc =.3
Mean 0.014 0.020 0.018 0.027 0.028 0.027 0.026 0.026 0.026 0.016
Upper 5th percentile 0.015 0.023 0.021 0.030 0.031 0.030 0.029 0.029 0.029 0.019
Lower 5th percentile 0.012 0.018 0.015 0.023 0.024 0.024 0.023 0.023 0.024 0.014
90% coverage rate (%) 90 93 88 83 92 90 90 92 93 90

τc =.2
Mean 0.015 0.025 0.021 0.036 0.042 0.042 0.042 0.041 0.040 0.031
Upper 5th percentile 0.016 0.027 0.025 0.040 0.047 0.048 0.047 0.045 0.045 0.035
Lower 5th percentile 0.013 0.022 0.018 0.032 0.036 0.038 0.038 0.036 0.036 0.027
90% coverage rate (%) 91 97 96 96 92 90 86 89 88 90

τc =.1
Mean 0.011 0.016 0.023 0.042 0.066 0.080 0.083 0.083 0.082 0.072
Upper 5th percentile 0.012 0.018 0.026 0.047 0.072 0.089 0.094 0.094 0.092 0.080
Lower 5th percentile 0.010 0.014 0.019 0.036 0.060 0.070 0.073 0.074 0.074 0.065
90% coverage rate (%) 82 95 95 93 91 92 88 92 89 93
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Figure B1: Monte Carlo simulation (100 replications): Consistency
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Figure B2: Monte Carlo simulation (100 replications): Asymptotic
normality
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Figure B3: Monte Carlo simulation (100 reps.): Bootstrap standard errors for selected quantiles of QDTE
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Figure B4: Monte Carlo simulation (100 replications): 90% coverage rate for selected quantiles of QDTE
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Figure B5: Monte Carlo simulation (100 reps.): Bootstrap standard errors for selected quantiles of GQTE
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Figure B6: Monte Carlo simulation (100 replications): 90% coverage rate for selected quantiles of GQTE
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Appendix C – Proofs

Proof of Theorem 1: Using Lemma 1 of Firpo (2007), the distribution func-

tions FY (d)(y), d = {0,1}, can be expressed in terms of weighted averages: FY (d)(y) =
1

Nsp
∑Nsp

i=1 wid1{Yi ≤ y}, with wi1 = Di

Pr(Di=1∣Xi) and wi0 = 1−Di

1−Pr(Di=1∣Xi) . The order statistics

Z(1)d ≤ . . . ≤ Z(Nd
sp)d are the values of the quantile functions derived from continuous

and monotonically increasing distribution functions FY (d)(y),

Z(i)d = F −1
Y (d)[θd] = inf{y ∶ 1

Nsp

Nsp

∑
i=1

wid1{Yi ≤ y} ≥ θd}, (18)

with (i − 1)/Nd
sp < θd ≤ i/Nd

sp, i ∈ {1, . . . ,Nd
sp}. Define the (Nd

sp × 1)-vectors Zsp,d =

(Z1d, . . . , ZNd
spd

)′. Consider the (Nsp × k)-covariate matrix Xsp, and the correspond-

ing ((Nsp/2) × k)-covariate matrix Xsp,0 for members of the control group. The pre-

dicted outcomes are given by Ŷsp = Xsp(X′
sp,0Xsp,0)−1X′

sp,0Ysp,0. The elements of the

(Nsp×1)-vector Ŷsp = (Ŷ1, . . . , ŶNsp)′ are used to obtain the order statistics Ẑ(i)d = inf{ŷ ∶
1

Nsp
∑Nsp

i=1 wid1{Ŷi ≤ ŷ} ≥ θd} and to define the (Nd
sp × 1)-vectors Ẑsp,d = (Ẑ1d, . . . , ẐNd

spd
)′.

Let ∆Z
sp,p = Πsp,pZsp,1 − Zsp,0. Under Assumption 2, the distribution of treatment

effects may be written as

F∆(δ) = F∆Z(δZ), (19)

where

∆Z = ∑
p∈Psp

Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)]∆Z
sp,p. (20)

After controlling for covariates, permutations that do not satisfy the condition

τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1) occur with a probability of zero under Assumption 2.

Therefore,

∆Z = ∑
p∈Ssp∣X

Pr[FZ
∆sp,p

(δZsp,p) = F∆(δ)]∆Z
sp,p, (21)

where Ssp∣X = {p ∈ Psp ∣ τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1)}. Equation (21) follows from
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equation (20), Assumptions 2 and 4, and from

∑p∈Psp Pr[τ(Πsp,pZsp,1,Zsp,0) = τsp]

= ∑
p∈Ssp∣X

Pr[τ(Πsp,pZsp,1,Zsp,0) = τsp ∣ τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

× Pr[τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

+ ∑
p∈S′sp∣X

Pr[τ(Πsp,pZsp,1,Zsp,0) = τsp ∣ τ(Πsp,pZsp,1, Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)]

× Pr[τ(Πsp,pZsp,1, Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)],

where S ′sp∣X = {p ∈ Psp ∣ τ(Πsp,pZsp,1, Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)}. Under Assumption 2,

Pr[τ(Πsp,pZsp,1, Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)] = 0 for all p ∈ Psp. Using Bayes’ law,

Pr[τ(Πsp,pZsp,1,Zsp,0) = τsp]

= Pr[τ(Πsp,pZsp,1,Zsp,0) = τsp ∣ τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

× Pr[τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

for all p ∈ Ssp∣X . Under Assumption 5,

Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)] =
1{Pr[F∆Z

sp,p
(δZsp,p) = F∆(δ)] > 0}

∑Psp 1{Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)] > 0}
(22)

for all p ∈ Psp. All permutations of Zsp,1 that satisfy τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1)

have a positive probability of occurrence under Assumptions 2 and 4. Therefore, under

Assumptions 2, 4, and 5, the distribution of treatment effects is identified through

F∆(δ) = F∆Z(δZ), (23)

where ∆Z = 1
np∣X ∑p∈Ssp∣X ∆Z

sp,p with np∣X = ∑p∈Psp 1{Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)] > 0} =

∑p∈Ssp∣X 1{τ(Πsp,pZsp,1, Ẑsp,0) = τ(Zsp,1, Ẑsp,1)}. Identification of the Population Quan-

tiles of the Distribution of Treatment Effects follows from

q∆,u = qu(F∆(δ)) = qu(F∆Z(δZ)). (24)

Q.E.D.
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Proof of Theorem 2: Using Lemma 1 of Firpo (2007), the distribution func-

tions FY (d)(y), d = {0,1}, can be expressed in terms of weighted averages: FY (d)(y) =
1

Nsp
∑Nsp

i=1 wid1{Yi ≤ y}, with wi1 = Di

Pr(Di=1∣Xi) and wi0 = 1−Di

1−Pr(Di=1∣Xi) . Let

i′ ∈ {{j11, . . . , j1N
(1−d)
sp

}, . . . ,{jNd
sp1, . . . , jNd

spN
(1−d)
sp

}} = {1, . . . ,N1
spN

0
sp},

and define the order statistics Z(1)d ≤ . . . ≤ Z(N1
spN

0
sp)d as values of the quantile functions

derived from continuous and monotonically increasing distribution functions FY (d)(y),

Z(i′)d = F −1
Y (d)[θd] = inf{y ∶ 1

Nsp

Nsp

∑
i=1

wid1{Yi ≤ y} ≥ θd}, (25)

with (i′ − 1)/(N1
spN

0
sp) < θd ≤ i′/(N1

spN
0
sp), i′ ∈ {1, . . . ,N1

spN
0
sp}.

Define the (N1
spN

0
sp × 1)-vectors

Vsp,d = (Z(j11)d, . . . , Z(j
1N
(1−d)
sp

)d, . . . , Z(j
Nd

sp1
)d, . . . , Z(j

Nd
spN

(1−d)
sp

)d)′

= (Z(1)d, . . . , Z(1)d,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N
(1−d)
sp

. . . , Z(Nd
sp)d, . . . , Z(Nd

sp)d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N
(1−d)
sp

)′,

where

Z(i)d = F −1
Y (d)[θd] = inf{y ∶ 1

Nsp

Nsp

∑
i=1

wid1{Yi ≤ y} ≥ θd}, (26)

with (i − 1)/Nd
sp < θd ≤ i/Nd

sp, i ∈ {1, . . . ,Nd
sp}. Define the (Nd

sp × 1)-vectors Zsp,d =

(Z1d, . . . , ZNd
spd

)′. Consider the (Nsp × k)-covariate matrix Xsp, and the correspond-

ing ((Nsp/2) × k)-covariate matrix Xsp,0 for members of the control group. The pre-

dicted outcomes are given by Ŷsp = Xsp(X′
sp,0Xsp,0)−1X′

sp,0Ysp,0. The elements of the

(Nsp×1)-vector Ŷsp = (Ŷ1, . . . , ŶNsp)′ are used to obtain the order statistics Ẑ(i)d = inf{ŷ ∶
1

Nsp
∑Nsp

i=1 wid1{Ŷi ≤ ŷ} ≥ θd} and to define the (Nd
sp × 1)-vectors Ẑsp,d = (Ẑ1d, . . . , ẐNd

spd
)′.

Consider the permutations Ωsp,dVsp,d = Msp,dZsp,d, where Ωsp,d are (N1
spN

0
sp×N1

spN
0
sp)-

permutation matrices, and where Msp,d are (N1
spN

0
sp×Nd

sp)-transformation matrices that
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transform the (Nd
sp × 1)-vectors Zsp,d into the (N1

spN
0
sp × 1)-vectors

Msp,dZsp,d = (Z1d, . . . , Z1d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N
(1−d)
sp

, . . . , ZNd
spd
, . . . , ZNd

spd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N
(1−d)
sp

)′.

Let ∆Z
sp,p = Msp,1Πsp,pZsp,1 −Msp,0Zsp,0. Under Assumption 2, the distribution of

treatment effects may be written as

F∆(δ) = F∆Z(δZ), (27)

where

∆Z = ∑
p∈Psp

Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)]∆Z
sp,p. (28)

After controlling for covariates, permutations that do not satisfy the condition

τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) = τ(Zsp,1, Ẑsp,1) occur with a probability of zero under

Assumption 2. Therefore,

∆Z = ∑
p∈Ssp∣X

Pr[FZ
∆sp,p

(δZsp,p) = F∆(δ)]∆Z
sp,p, (29)

where Ssp∣X = {p ∈ Psp ∣ τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) = τ(Zsp,1, Ẑsp,1)}. Equation (29)

follows from equation (28), Assumptions 2 and 4, and from

∑p∈Psp Pr[τ(Msp,1Πsp,pZsp,1,Msp,0Zsp,0) = τsp]

= ∑
p∈Ssp∣X

Pr [τ(Msp,1Πsp,pZsp,1,Msp,0Zsp,0) = τsp ∣

τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

× Pr[τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

+ ∑
p∈S′sp∣X

Pr [τ(Msp,1Πsp,pZsp,1,Msp,0Zsp,0) = τsp ∣

τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)]

× Pr[τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)],

where S ′sp∣X = {p ∈ Psp ∣ τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)}. Under Assump-
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tion 2, Pr[τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) ≠ τ(Zsp,1, Ẑsp,1)] = 0 for all p ∈ Psp. Using

Bayes’ law,

Pr[τ(Msp,1Πsp,pZsp,1,Msp,0Zsp,0) = τsp]

= Pr[τ(Msp,1Πsp,pZsp,1,Msp,0Zsp,0) = τsp ∣

τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

× Pr[τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) = τ(Zsp,1, Ẑsp,1)]

for all p ∈ Ssp∣X . Under Assumption 5,

Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)] =
1{Pr[F∆Z

sp,p
(δZsp,p) = F∆(δ)] > 0}

∑Psp 1{Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)] > 0}
(30)

for all p ∈ Psp. All permutations of Zsp,1 that satisfy τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) =

τ(Zsp,1, Ẑsp,1) have a positive probability of occurrence under Assumptions 2 and 4.

Therefore, under Assumptions 2, 4, and 5, the distribution of treatment effects is iden-

tified through

F∆(δ) = F∆Z(δZ), (31)

where ∆Z = 1
np∣X ∑p∈Ssp∣X ∆Z

sp,p with np∣X = ∑p∈Psp 1{Pr[F∆Z
sp,p

(δZsp,p) = F∆(δ)] > 0} =

∑p∈Ssp∣X 1{τ(Msp,1Πsp,pZsp,1,Msp,0Ẑsp,0) = τ(Zsp,1, Ẑsp,1)}. Identification of the Popula-

tion Quantiles of the Distribution of Treatment Effects follows from

q∆,u = qu(F∆(δ)) = qu(F∆Z(δZ)). (32)

Q.E.D.
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